Convergence: HPC, Big Data & Enterprise Computing

By Gary Johnson

October 28, 2013

Many HPC aficionados probably think of Enterprise Computing as something static and boring: a solved problem; something to be maintained and occasionally updated; or maybe moved to a Cloud – but not a fruitful area for novel approaches or exotic hardware.  Big Data may change those views.  Let’s take a look.

Enterprise Computing

What is Enterprise Computing?  Wiktionary defines enterprise as “A company, business, organization, or other purposeful endeavor.”  In their enterprise computing text, Shan & Earle state that “Enterprise computing involves the development, deployment and maintenance of the information systems required for survival and success in today’s business climate.”

OK, so far so good.  It would seem that enterprise computing is a function of the nature of the purposeful endeavor and the business climate in which it is immersed.

Business Climate Change

The emergence of Big Data is clearly changing the general business climate.  This point was made clearly and compellingly at the recent Big Data’13 conference.  The traditional structured data used in business intelligence, stored in the rows and columns of countless spreadsheets and in SQL databases, is being rapidly augmented by large and rapidly growing volumes of unstructured data.  Google alone is said to be acquiring unstructured data at the rate of a petabyte per hour.  The expectation that competitive advantage can be had by more effectively and more rapidly using all of this structured and unstructured data is now widely held.  This has driven business intelligence into big data analytics – including graph analytics – and more aggressive, complicated and resource-intensive use cases.  These new aspects of business intelligence, in turn, create a demand for new applications, algorithms and computing system architectures.  Starting to sound like our world of HPC?

Big Data is HPC

We have previously observed that Big Data is a form of HPC and should be embraced as such.  This is currently happening in several science disciplines, such as high energy physics, astronomy, and biology.  The need for data analytics and, in particular, visual analytics is driving Big Data-as-HPC into additional sciences – including human health.  The emerging Internet of Things will make Big Data much bigger, more valuable and useful in new ways – further embedding Big Data and data-intensive computing into HPC.

A recent presentation to the Secretary of Energy’s Advisory Board clearly indicates that the advocates of the Department of Energy’s Exascale Initiative understand that the future of high-end computing lies both in Big Compute and Big Data.  So, it’s reasonable to expect that future applications, algorithms and computing architectures for science will be developed to serve both aspects of HPC.

At this point in the development of Big Data, it seems that the emerging solutions are reacting to the fast pace and evolving nature of the data.

Enterprise Data Characteristics

A useful summary of the current state of the general “data deluge” has been provided by Fox, Hey and Trefethen and is drawn upon here.

We distinguish among three different types of data:

  • Observational Data – uncontrolled events happen and we record data about them
    • Examples include: astronomy, earth observation, geophysics, medicine, commerce, business intelligence, social data, the internet of things
    • Experimental Data – we design controlled events for the purpose of recording data about them
      • Examples include: particle physics, photon sources, neutron sources, bioinformatics, engineering design
      • Simulation Data – we create a model, simulate something, and record the resulting data
        • Examples include: weather & climate, nuclear & fusion energy, high-energy physics, materials, chemistry, biology, fluid dynamics, engineering design

Since most data is yet to be collected, we focus here on data rates rather than absolute amounts.  A very high level summary of some of the current or expected data rates in the three data categories is contained in the table below.

Data Type

Data Rate

Timing

Observational
   Astronomy: Square Kilometer Array

>100Tb/sec

2016-2022

   Medicine: Imaging

>1EB/year

now

   Earth Observation

4PB/year

now

   Facebook

>180PB/year

now

Experimental
   Particle Physics: Large Hadron Collider

15PB/year

now

   Photon Sources: Advanced Light Sources

7TB/hour

2015

   Bioinformatics: Human Genome Sequencing

700Pb/year

now

   Bioinformatics: Human Genome Sequencing

10Eb/year

future

Simulation
   Fusion Energy

2PB/time step

now

   Fusion Energy

200PB/time step

2020

   Climate Modeling

400PB/year

now

One immediately notices that the data are hard to compare. The rates for observational data are probably the clearest. For example, if we assume that the Square Kilometer Array were to operate continuously at its full capability, then in the 2022 time frame it would be generating just under 400 exabytes per year. This would appear to make it the world’s largest single data generator – but medical imaging, social data, or the internet of things could well be larger by 2022.

Further note that the business intelligence data used in enterprise computing falls into the category of observational data.  This is probably the most difficult data type to deal with.  Observational data: is collected continuously; comes from a mix of a small number of large sources (e.g. enterprise data collections) and a large number of smaller – but very significant – sources (e.g. medical imaging, social data, internet of things); and its growth rate increases as the capability to collect and resolve such data increases.  So, the associated enterprise computing requirements will be challenging.

Further confirmation of these estimates is provided by the recently launched Chinese Academy of Sciences strategic research project, called NICT (New generation of IC Technology).  It assumes that by 2020 the world will need to utilize zettabytes of data.  Presumably, most of this data will be observational and it will be used by enterprises.

Convergence

So, if Big Data is HPC and if Enterprise Computing is becoming increasingly dependent on Big Data, will this lead to a convergence of Enterprise Computing and HPC?  Judging by the presentations and informal discussions at Big Data’13, such a convergence appears highly likely – if not inevitable – and is, arguably, already underway.

Computing, the internet, social networking, active customer involvement, and the emerging internet of things are causing significant changes in the general business climate and are also creating opportunities for entirely new businesses.  A common element in all of this is data.  It is coming in large volumes and at high rates.  It needs to be analyzed in depth and visualized insightfully to provide useful and actionable business intelligence.  As the demands on such intelligence grow and become more complex, their satisfaction will probably require a mix of compute- and data-intensive techniques.

The demands of Enterprise Computing-as-HPC will surely lead to the development of new and interesting applications and algorithms.  One can easily conceive of such developments as being similar to what we know from the open literature about Big Data applications in the national intelligence community.

This evolved form of Enterprise Computing may also lead to the development of tailored or special purpose computing systems to support unique requirements.  Indeed, the HPC vendor community has already recognized this.  One needs only to look to IBM’s Watson or YarcData’s Urika to see the first steps at a response.

Future Opportunities

Big Data technology is currently a young and fragmented market.  On the software side, data analytics and visualization are rapidly evolving with dozens of current providers and a steady stream of new entrants with novel approaches.  On the hardware side, HPC vendors are adapting or extending current products to the needs of Big Data as well as introducing new products, like Urika and D-Wave‘s quantum computer.

At this point, the data is in the driver’s seat and technologies are reacting to it.  There is a lot more data to come.  Think of the internet of things (and that subset of it called the internet of us).  Speaking of “us”, think of the “crowd” as both a producer and consumer of data – in ever larger quantities and greater varieties.  Think also of other emerging data sources, like 3-D printing which, as it matures, will effectively turn material objects into their representations in data.

We are entering a period during which Big Data will transform Enterprise Computing into a principal venue for creative uses of HPC and the incubation of new businesses.  The convergence has already started.  We in HPC should be full partners in it and help shape the future of Enterprise Computing.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together about 30 participants from industry, government and academia t Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together ab Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Leading Solution Providers

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This