Convergence: HPC, Big Data & Enterprise Computing

By Gary Johnson

October 28, 2013

Many HPC aficionados probably think of Enterprise Computing as something static and boring: a solved problem; something to be maintained and occasionally updated; or maybe moved to a Cloud – but not a fruitful area for novel approaches or exotic hardware.  Big Data may change those views.  Let’s take a look.

Enterprise Computing

What is Enterprise Computing?  Wiktionary defines enterprise as “A company, business, organization, or other purposeful endeavor.”  In their enterprise computing text, Shan & Earle state that “Enterprise computing involves the development, deployment and maintenance of the information systems required for survival and success in today’s business climate.”

OK, so far so good.  It would seem that enterprise computing is a function of the nature of the purposeful endeavor and the business climate in which it is immersed.

Business Climate Change

The emergence of Big Data is clearly changing the general business climate.  This point was made clearly and compellingly at the recent Big Data’13 conference.  The traditional structured data used in business intelligence, stored in the rows and columns of countless spreadsheets and in SQL databases, is being rapidly augmented by large and rapidly growing volumes of unstructured data.  Google alone is said to be acquiring unstructured data at the rate of a petabyte per hour.  The expectation that competitive advantage can be had by more effectively and more rapidly using all of this structured and unstructured data is now widely held.  This has driven business intelligence into big data analytics – including graph analytics – and more aggressive, complicated and resource-intensive use cases.  These new aspects of business intelligence, in turn, create a demand for new applications, algorithms and computing system architectures.  Starting to sound like our world of HPC?

Big Data is HPC

We have previously observed that Big Data is a form of HPC and should be embraced as such.  This is currently happening in several science disciplines, such as high energy physics, astronomy, and biology.  The need for data analytics and, in particular, visual analytics is driving Big Data-as-HPC into additional sciences – including human health.  The emerging Internet of Things will make Big Data much bigger, more valuable and useful in new ways – further embedding Big Data and data-intensive computing into HPC.

A recent presentation to the Secretary of Energy’s Advisory Board clearly indicates that the advocates of the Department of Energy’s Exascale Initiative understand that the future of high-end computing lies both in Big Compute and Big Data.  So, it’s reasonable to expect that future applications, algorithms and computing architectures for science will be developed to serve both aspects of HPC.

At this point in the development of Big Data, it seems that the emerging solutions are reacting to the fast pace and evolving nature of the data.

Enterprise Data Characteristics

A useful summary of the current state of the general “data deluge” has been provided by Fox, Hey and Trefethen and is drawn upon here.

We distinguish among three different types of data:

  • Observational Data – uncontrolled events happen and we record data about them
    • Examples include: astronomy, earth observation, geophysics, medicine, commerce, business intelligence, social data, the internet of things
    • Experimental Data – we design controlled events for the purpose of recording data about them
      • Examples include: particle physics, photon sources, neutron sources, bioinformatics, engineering design
      • Simulation Data – we create a model, simulate something, and record the resulting data
        • Examples include: weather & climate, nuclear & fusion energy, high-energy physics, materials, chemistry, biology, fluid dynamics, engineering design

Since most data is yet to be collected, we focus here on data rates rather than absolute amounts.  A very high level summary of some of the current or expected data rates in the three data categories is contained in the table below.

Data Type

Data Rate


   Astronomy: Square Kilometer Array



   Medicine: Imaging



   Earth Observation






   Particle Physics: Large Hadron Collider



   Photon Sources: Advanced Light Sources



   Bioinformatics: Human Genome Sequencing



   Bioinformatics: Human Genome Sequencing



   Fusion Energy

2PB/time step


   Fusion Energy

200PB/time step


   Climate Modeling



One immediately notices that the data are hard to compare. The rates for observational data are probably the clearest. For example, if we assume that the Square Kilometer Array were to operate continuously at its full capability, then in the 2022 time frame it would be generating just under 400 exabytes per year. This would appear to make it the world’s largest single data generator – but medical imaging, social data, or the internet of things could well be larger by 2022.

Further note that the business intelligence data used in enterprise computing falls into the category of observational data.  This is probably the most difficult data type to deal with.  Observational data: is collected continuously; comes from a mix of a small number of large sources (e.g. enterprise data collections) and a large number of smaller – but very significant – sources (e.g. medical imaging, social data, internet of things); and its growth rate increases as the capability to collect and resolve such data increases.  So, the associated enterprise computing requirements will be challenging.

Further confirmation of these estimates is provided by the recently launched Chinese Academy of Sciences strategic research project, called NICT (New generation of IC Technology).  It assumes that by 2020 the world will need to utilize zettabytes of data.  Presumably, most of this data will be observational and it will be used by enterprises.


So, if Big Data is HPC and if Enterprise Computing is becoming increasingly dependent on Big Data, will this lead to a convergence of Enterprise Computing and HPC?  Judging by the presentations and informal discussions at Big Data’13, such a convergence appears highly likely – if not inevitable – and is, arguably, already underway.

Computing, the internet, social networking, active customer involvement, and the emerging internet of things are causing significant changes in the general business climate and are also creating opportunities for entirely new businesses.  A common element in all of this is data.  It is coming in large volumes and at high rates.  It needs to be analyzed in depth and visualized insightfully to provide useful and actionable business intelligence.  As the demands on such intelligence grow and become more complex, their satisfaction will probably require a mix of compute- and data-intensive techniques.

The demands of Enterprise Computing-as-HPC will surely lead to the development of new and interesting applications and algorithms.  One can easily conceive of such developments as being similar to what we know from the open literature about Big Data applications in the national intelligence community.

This evolved form of Enterprise Computing may also lead to the development of tailored or special purpose computing systems to support unique requirements.  Indeed, the HPC vendor community has already recognized this.  One needs only to look to IBM’s Watson or YarcData’s Urika to see the first steps at a response.

Future Opportunities

Big Data technology is currently a young and fragmented market.  On the software side, data analytics and visualization are rapidly evolving with dozens of current providers and a steady stream of new entrants with novel approaches.  On the hardware side, HPC vendors are adapting or extending current products to the needs of Big Data as well as introducing new products, like Urika and D-Wave‘s quantum computer.

At this point, the data is in the driver’s seat and technologies are reacting to it.  There is a lot more data to come.  Think of the internet of things (and that subset of it called the internet of us).  Speaking of “us”, think of the “crowd” as both a producer and consumer of data – in ever larger quantities and greater varieties.  Think also of other emerging data sources, like 3-D printing which, as it matures, will effectively turn material objects into their representations in data.

We are entering a period during which Big Data will transform Enterprise Computing into a principal venue for creative uses of HPC and the incubation of new businesses.  The convergence has already started.  We in HPC should be full partners in it and help shape the future of Enterprise Computing.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

GDPR’s Impact on Scientific Research Uncertain

May 24, 2018

Amid the angst over preparations—or lack thereof—for new European Union data protections entering into force at week’s end is the equally worrisome issue of the rules’ impact on scientific research. Among the Read more…

By George Leopold

Intel Pledges First Commercial Nervana Product ‘Spring Crest’ in 2019

May 24, 2018

At its AI developer conference in San Francisco yesterday, Intel embraced a holistic approach to AI and showed off a broad AI portfolio that includes Xeon processors, Movidius technologies, FPGAs and Intel’s Nervana Neural Network Processors (NNPs), based on the technology it acquired in 2016. Read more…

By Tiffany Trader

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Francisco, one would be tempted to dismiss its claims of inventing Read more…

By John Russell

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Mastering the Big Data Challenge in Cognitive Healthcare

Patrick Chain, genomics researcher at Los Alamos National Laboratory, posed a question in a recent blog: What if a nurse could swipe a patient’s saliva and run a quick genetic test to determine if the patient’s sore throat was caused by a cold virus or a bacterial infection? Read more…

Silicon Startup Raises ‘Prodigy’ for Hyperscale/AI Workloads

May 23, 2018

There's another silicon startup coming onto the HPC/hyperscale scene with some intriguing and bold claims. Silicon Valley-based Tachyum Inc., which has been emerging from stealth over the last year and a half, is unveili Read more…

By Tiffany Trader

Intel Pledges First Commercial Nervana Product ‘Spring Crest’ in 2019

May 24, 2018

At its AI developer conference in San Francisco yesterday, Intel embraced a holistic approach to AI and showed off a broad AI portfolio that includes Xeon processors, Movidius technologies, FPGAs and Intel’s Nervana Neural Network Processors (NNPs), based on the technology it acquired in 2016. Read more…

By Tiffany Trader

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Franci Read more…

By John Russell

Silicon Startup Raises ‘Prodigy’ for Hyperscale/AI Workloads

May 23, 2018

There's another silicon startup coming onto the HPC/hyperscale scene with some intriguing and bold claims. Silicon Valley-based Tachyum Inc., which has been eme Read more…

By Tiffany Trader

Japan Meteorological Agency Takes Delivery of Pair of Crays

May 21, 2018

Cray has supplied two identical Cray XC50 supercomputers to the Japan Meteorological Agency (JMA) in northwestern Tokyo. Boasting more than 18 petaflops combine Read more…

By Tiffany Trader

ASC18: Final Results Revealed & Wrapped Up

May 17, 2018

It was an exciting week at ASC18 in Nanyang, China. The student teams braved extreme heat, extremely difficult applications, and extreme competition in order to cross the cluster competition finish line. The gala awards ceremony took place on Wednesday. The auditorium was packed with student teams, various dignitaries, the media, and other interested parties. So what happened? Read more…

By Dan Olds

Spring Meetings Underscore Quantum Computing’s Rise

May 17, 2018

The month of April 2018 saw four very important and interesting meetings to discuss the state of quantum computing technologies, their potential impacts, and th Read more…

By Alex R. Larzelere

Quantum Network Hub Opens in Japan

May 17, 2018

Following on the launch of its Q Commercial quantum network last December with 12 industrial and academic partners, the official Japanese hub at Keio University is now open to facilitate the exploration of quantum applications important to science and business. The news comes a week after IBM announced that North Carolina State University was the first U.S. university to join its Q Network. Read more…

By Tiffany Trader

Democratizing HPC: OSC Releases Version 1.3 of OnDemand

May 16, 2018

Making HPC resources readily available and easier to use for scientists who may have less HPC expertise is an ongoing challenge. Open OnDemand is a project by t Read more…

By John Russell

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17


AMD @ SC17


ASRock Rack @ SC17

ASRock Rack



DDN Storage @ SC17

DDN Storage

Huawei @ SC17


IBM @ SC17


IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17


Lenovo @ SC17


Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17


Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17


Tyan @ SC17


Univa @ SC17


Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

CFO Steps down in Executive Shuffle at Supermicro

January 31, 2018

Supermicro yesterday announced senior management shuffling including prominent departures, the completion of an audit linked to its delayed Nasdaq filings, and Read more…

By John Russell

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

Deep Learning Portends ‘Sea Change’ for Oil and Gas Sector

February 1, 2018

The billowing compute and data demands that spurred the oil and gas industry to be the largest commercial users of high-performance computing are now propelling Read more…

By Tiffany Trader

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Sympo Read more…

By Staff

Part One: Deep Dive into 2018 Trends in Life Sciences HPC

March 1, 2018

Life sciences is an interesting lens through which to see HPC. It is perhaps not an obvious choice, given life sciences’ relative newness as a heavy user of H Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This