Convergence: HPC, Big Data & Enterprise Computing

By Gary Johnson

October 28, 2013

Many HPC aficionados probably think of Enterprise Computing as something static and boring: a solved problem; something to be maintained and occasionally updated; or maybe moved to a Cloud – but not a fruitful area for novel approaches or exotic hardware.  Big Data may change those views.  Let’s take a look.

Enterprise Computing

What is Enterprise Computing?  Wiktionary defines enterprise as “A company, business, organization, or other purposeful endeavor.”  In their enterprise computing text, Shan & Earle state that “Enterprise computing involves the development, deployment and maintenance of the information systems required for survival and success in today’s business climate.”

OK, so far so good.  It would seem that enterprise computing is a function of the nature of the purposeful endeavor and the business climate in which it is immersed.

Business Climate Change

The emergence of Big Data is clearly changing the general business climate.  This point was made clearly and compellingly at the recent Big Data’13 conference.  The traditional structured data used in business intelligence, stored in the rows and columns of countless spreadsheets and in SQL databases, is being rapidly augmented by large and rapidly growing volumes of unstructured data.  Google alone is said to be acquiring unstructured data at the rate of a petabyte per hour.  The expectation that competitive advantage can be had by more effectively and more rapidly using all of this structured and unstructured data is now widely held.  This has driven business intelligence into big data analytics – including graph analytics – and more aggressive, complicated and resource-intensive use cases.  These new aspects of business intelligence, in turn, create a demand for new applications, algorithms and computing system architectures.  Starting to sound like our world of HPC?

Big Data is HPC

We have previously observed that Big Data is a form of HPC and should be embraced as such.  This is currently happening in several science disciplines, such as high energy physics, astronomy, and biology.  The need for data analytics and, in particular, visual analytics is driving Big Data-as-HPC into additional sciences – including human health.  The emerging Internet of Things will make Big Data much bigger, more valuable and useful in new ways – further embedding Big Data and data-intensive computing into HPC.

A recent presentation to the Secretary of Energy’s Advisory Board clearly indicates that the advocates of the Department of Energy’s Exascale Initiative understand that the future of high-end computing lies both in Big Compute and Big Data.  So, it’s reasonable to expect that future applications, algorithms and computing architectures for science will be developed to serve both aspects of HPC.

At this point in the development of Big Data, it seems that the emerging solutions are reacting to the fast pace and evolving nature of the data.

Enterprise Data Characteristics

A useful summary of the current state of the general “data deluge” has been provided by Fox, Hey and Trefethen and is drawn upon here.

We distinguish among three different types of data:

  • Observational Data – uncontrolled events happen and we record data about them
    • Examples include: astronomy, earth observation, geophysics, medicine, commerce, business intelligence, social data, the internet of things
    • Experimental Data – we design controlled events for the purpose of recording data about them
      • Examples include: particle physics, photon sources, neutron sources, bioinformatics, engineering design
      • Simulation Data – we create a model, simulate something, and record the resulting data
        • Examples include: weather & climate, nuclear & fusion energy, high-energy physics, materials, chemistry, biology, fluid dynamics, engineering design

Since most data is yet to be collected, we focus here on data rates rather than absolute amounts.  A very high level summary of some of the current or expected data rates in the three data categories is contained in the table below.

Data Type

Data Rate

Timing

Observational
   Astronomy: Square Kilometer Array

>100Tb/sec

2016-2022

   Medicine: Imaging

>1EB/year

now

   Earth Observation

4PB/year

now

   Facebook

>180PB/year

now

Experimental
   Particle Physics: Large Hadron Collider

15PB/year

now

   Photon Sources: Advanced Light Sources

7TB/hour

2015

   Bioinformatics: Human Genome Sequencing

700Pb/year

now

   Bioinformatics: Human Genome Sequencing

10Eb/year

future

Simulation
   Fusion Energy

2PB/time step

now

   Fusion Energy

200PB/time step

2020

   Climate Modeling

400PB/year

now

One immediately notices that the data are hard to compare. The rates for observational data are probably the clearest. For example, if we assume that the Square Kilometer Array were to operate continuously at its full capability, then in the 2022 time frame it would be generating just under 400 exabytes per year. This would appear to make it the world’s largest single data generator – but medical imaging, social data, or the internet of things could well be larger by 2022.

Further note that the business intelligence data used in enterprise computing falls into the category of observational data.  This is probably the most difficult data type to deal with.  Observational data: is collected continuously; comes from a mix of a small number of large sources (e.g. enterprise data collections) and a large number of smaller – but very significant – sources (e.g. medical imaging, social data, internet of things); and its growth rate increases as the capability to collect and resolve such data increases.  So, the associated enterprise computing requirements will be challenging.

Further confirmation of these estimates is provided by the recently launched Chinese Academy of Sciences strategic research project, called NICT (New generation of IC Technology).  It assumes that by 2020 the world will need to utilize zettabytes of data.  Presumably, most of this data will be observational and it will be used by enterprises.

Convergence

So, if Big Data is HPC and if Enterprise Computing is becoming increasingly dependent on Big Data, will this lead to a convergence of Enterprise Computing and HPC?  Judging by the presentations and informal discussions at Big Data’13, such a convergence appears highly likely – if not inevitable – and is, arguably, already underway.

Computing, the internet, social networking, active customer involvement, and the emerging internet of things are causing significant changes in the general business climate and are also creating opportunities for entirely new businesses.  A common element in all of this is data.  It is coming in large volumes and at high rates.  It needs to be analyzed in depth and visualized insightfully to provide useful and actionable business intelligence.  As the demands on such intelligence grow and become more complex, their satisfaction will probably require a mix of compute- and data-intensive techniques.

The demands of Enterprise Computing-as-HPC will surely lead to the development of new and interesting applications and algorithms.  One can easily conceive of such developments as being similar to what we know from the open literature about Big Data applications in the national intelligence community.

This evolved form of Enterprise Computing may also lead to the development of tailored or special purpose computing systems to support unique requirements.  Indeed, the HPC vendor community has already recognized this.  One needs only to look to IBM’s Watson or YarcData’s Urika to see the first steps at a response.

Future Opportunities

Big Data technology is currently a young and fragmented market.  On the software side, data analytics and visualization are rapidly evolving with dozens of current providers and a steady stream of new entrants with novel approaches.  On the hardware side, HPC vendors are adapting or extending current products to the needs of Big Data as well as introducing new products, like Urika and D-Wave‘s quantum computer.

At this point, the data is in the driver’s seat and technologies are reacting to it.  There is a lot more data to come.  Think of the internet of things (and that subset of it called the internet of us).  Speaking of “us”, think of the “crowd” as both a producer and consumer of data – in ever larger quantities and greater varieties.  Think also of other emerging data sources, like 3-D printing which, as it matures, will effectively turn material objects into their representations in data.

We are entering a period during which Big Data will transform Enterprise Computing into a principal venue for creative uses of HPC and the incubation of new businesses.  The convergence has already started.  We in HPC should be full partners in it and help shape the future of Enterprise Computing.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

DoE Awards 24 ASCR Leadership Computing Challenge (ALCC) Projects

June 28, 2017

On Monday, the U.S. Department of Energy’s (DOE’s) ASCR Leadership Computing Challenge (ALCC) program awarded 24 projects a total of 2.1 billion core-hours at the Argonne Leadership Computing Facility (ALCF). The o Read more…

By HPCwire Staff

STEM-Trekker Badisa Mosesane Attends CERN Summer Student Program

June 27, 2017

Badisa Mosesane, an undergraduate scholar who studies computer science at the University of Botswana in Gaborone, recently joined other students from developing nations around the world in Geneva, Switzerland to particip Read more…

By Elizabeth Leake, STEM-Trek

The EU Human Brain Project Reboots but Supercomputing Still Needed

June 26, 2017

The often contentious, EU-funded Human Brain Project whose initial aim was fixed firmly on full-brain simulation is now in the midst of a reboot targeting a more modest goal – development of informatics tools and data/ Read more…

By John Russell

DOE Launches Chicago Quantum Exchange

June 26, 2017

While many of us were preoccupied with ISC 2017 last week, the launch of the Chicago Quantum Exchange went largely unnoticed. So what is such a thing? It is a Department of Energy sponsored collaboration between the Univ Read more…

By John Russell

HPE Extreme Performance Solutions

Optimized HPC Solutions Driving Performance, Efficiency, and Scale

Technology is transforming nearly every human and business process, from driving business growth, to translating documents in real time, to enhancing decision-making in areas like financial services and scientific research. Read more…

UMass Dartmouth Reports on HPC Day 2017 Activities

June 26, 2017

UMass Dartmouth's Center for Scientific Computing & Visualization Research (CSCVR) organized and hosted the third annual "HPC Day 2017" on May 25th. This annual event showcases on-going scientific research in Massach Read more…

By Gaurav Khanna

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascale” award), parsed out additional information ab Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid whoops and hollers from the crowd, Thomas Sterling presented t Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out plans to push deeper into climate science and develop more gran Read more…

By John Russell

DoE Awards 24 ASCR Leadership Computing Challenge (ALCC) Projects

June 28, 2017

On Monday, the U.S. Department of Energy’s (DOE’s) ASCR Leadership Computing Challenge (ALCC) program awarded 24 projects a total of 2.1 billion core-hour Read more…

By HPCwire Staff

DOE Launches Chicago Quantum Exchange

June 26, 2017

While many of us were preoccupied with ISC 2017 last week, the launch of the Chicago Quantum Exchange went largely unnoticed. So what is such a thing? It is a D Read more…

By John Russell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid wh Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out pla Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale Read more…

By Doug Black

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big d Read more…

By Alex Woodie

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This