A Path To Energy Efficient HPC Datacenters

By Hayk Shoukourian

October 29, 2013

Energy efficiency is rapidly becoming a key factor for many modern high-performance computing (HPC) datacenters. It poses various challenges, which need to be addressed holistically and in an integrated manner, covering the HPC system environment (system hardware and system software), the hosting facility and infrastructure (cooling technologies, energy re-use, power supply chain, etc.), and applications (algorithms, performance metrics, etc.).

Most of the management schemes present in current HPC datacenters do not allow data to be shared between the HPC system environment, hosting facility, and infrastructure. But, it is important to collect and correlate data from all aspects of the datacenter in order to: better understand the interactions between different components of the datacenter; spot the improvement possibilities; and assess any introduced improvements. There are currently no tools that support a complete collection and correlation of energy efficiency relevant data, allowing for a unified view of energy consumption present in the datacenter.

That’s why a new energy measuring and evaluation toolset is being developed at the Leibniz Supercomputing Centre of the Bavarian Academy of Sciences (BAdW-LRZ) which is capable of monitoring and analysing the energy consumption of a supercomputing site in a holistic way, combining the HPC systems with data from the cooling and building infrastructure. The tool, named Power Data Aggregation Monitor (PowerDAM), allows the collection and evaluation of sensor data independently from the source systems and is capable of monitoring not only HPC systems but any other infrastructure that can be represented as a hierarchical tree. It monitors physical sensors as well as virtual sensors which can represent different functional compositions of several physical sensors.

PowerDAM provides a plug-in framework for defining the desired monitored entities such as IT systems, building infrastructure, etc. Two plug-in interfaces for each monitored entity are provided: one for sensor data collection and one for collecting application relevant data (e.g., utilized compute nodes, starting and ending timestamps of application, etc.) from system resource management tools.

PowerDAM is an underlying framework for energy efficiency related research at BAdW-LRZ.

Evaluating and Reporting

Energy-to-Solution (EtS) is an important metric for PowerDAM which denotes the aggregated energy consumption of an application consisting of the energy consumption of utilized compute nodes and partial sub-system components (e.g., system networking and system cooling).

Figure 1 presents the EtS report for an application executed on CoolMUC MPP Linux cluster. The first part of the report (part I) shows the sensor measurements for all utilized components in the order of timestamp, sensor name, value and unit.

Figure 1: EtS Report for an application executed on CoolMUC MPP Linux Cluster

Part II shows all approximations of source measurement data which were considered to be invalid (missing measurements, out of bounds data, etc.). Part III shows the aggregated energy consumption (EtS) of the executed application and provides information on the consumption percentages of computation, networking, and cooling.

The ability to calculate the EtS of an application allows for the further understanding and tuning of the application internally (via change of algorithms, memory access patterns, etc.) as well as externally through hardware adaptation (e.g., static/dynamic voltage frequency scaling).

PowerDAM provides various visualization options such as: the power draw, utilization rate, and averaged CPU temperatures of utilized compute nodes; correlation between power and load for these nodes; different EtS reports; and system power consumption for a given time frame (e.g. day, month, and year). Figure 2 illustrates one of these options – the EtS report (encompassing in parallel to the EtS, the percentages for computation, infrastructure, cooling, and networking) for all executed applications by a given user.

Figure 2: EtS Report for All Jobs Submitted by Given User

PowerDAM “node-map” view displays the dynamic behavior of compute nodes for a given sensor type. This view updates automatically after a customized amount of time and uses a color mapping to classify the behavior of the compute nodes (Figure 3).

Figure 3: Utilization Map of Compute Nodes for CoolMUC Linux Cluster. The color green illustrates the 96% to 100% utilization range. The color white illustrates the 0% and 90% to 95% utilization range. The color red illustrates the 1% to 89% utilization range. (not all compute nodes of the cluster are depicted)

The “node-map” view can be essential for understanding the interconnection between different sensor types. For example, correlating utilization rate (Figure 3) with CPU temperature (Figure 4) allows the investigation of the interdependency between utilization rates and CPU temperatures of defined compute nodes (nodes lxa130 and lxa17).

Figure 4: Temperature Map of Compute Nodes for CoolMUC Linux Cluster (2×8-core AMD CPUs per compute node)
(not all compute nodes of the cluster are depicted)

Further development will allow PowerDAM to: classify applications according to power draw, runtime, performance, and energy consumption; provide data necessary for the enhancement of the resource management systems; and report on datacenter key performance indicators (KPIs) such as PUE, ERE, DCiE, WUE, etc.

More detailed information on PowerDAM is available in the Proceedings of the First International Conference on Information and Communication Technologies for Sustainability under “Towards a Unified Energy Efficiency Evaluation Toolset: An Approach and Its Implementation at Leibniz Supercomputing Centre (LRZ)” and is indexed under DOI 10.3929/ethz-a-007337628.

The development of PowerDAM was made possible by the PRACE Second Implementation Phase project PRACE- 2IP in the Work Package “Prototyping” which has received funding from the European Community’s Seventh Framework Program (FP7/2007-2013) under grant agreement no. RI-283493 and within the SIMOPEK project which has received funding from the German Federal Ministry of Education and Research (BMBF) under grand agreement no. 01IH13007A. The work was achieved using the PRACE Research Infrastructure resources at BAdW-LRZ with support of the State of Bavaria, Germany.

The authors would like to thank Jeanette Wilde for her valuable comments and support.

Author Affiliations

Hayk Shoukourian(1,2); Torsten Wilde(1); Axel Auweter(1); Arndt Bode(1,2)

1Leibniz Supercomputing Centre of the Bavarian Academy of Sciences and Humanities (BAdW-LRZ)

2Technische Universität München (TUM), Fakultät für Informatik

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Machine Learning at HPC User Forum: Drilling into Specific Use Cases

September 22, 2017

The 66th HPC User Forum held September 5-7, in Milwaukee, Wisconsin, at the elegant and historic Pfister Hotel, highlighting the 1893 Victorian décor and art of “The Grand Hotel Of The West,” contrasted nicely with Read more…

By Arno Kolster

Google Cloud Makes Good on Promise to Add Nvidia P100 GPUs

September 21, 2017

Google has taken down the notice on its cloud platform website that says Nvidia Tesla P100s are “coming soon.” That's because the search giant has announced the beta launch of the high-end P100 Nvidia Tesla GPUs on t Read more…

By George Leopold

Cray Wins $48M Supercomputer Contract from KISTI

September 21, 2017

It was a good day for Cray which won a $48 million contract from the Korea Institute of Science and Technology Information (KISTI) for a 128-rack CS500 cluster supercomputer. The new system, equipped with Intel Xeon Scal Read more…

By John Russell

HPE Extreme Performance Solutions

HPE Prepares Customers for Success with the HPC Software Portfolio

High performance computing (HPC) software is key to harnessing the full power of HPC environments. Development and management tools enable IT departments to streamline installation and maintenance of their systems as well as create, optimize, and run their HPC applications. Read more…

Adolfy Hoisie to Lead Brookhaven’s Computing for National Security Effort

September 21, 2017

Brookhaven National Laboratory announced today that Adolfy Hoisie will chair its newly formed Computing for National Security department, which is part of Brookhaven’s new Computational Science Initiative (CSI). Read more…

By John Russell

Machine Learning at HPC User Forum: Drilling into Specific Use Cases

September 22, 2017

The 66th HPC User Forum held September 5-7, in Milwaukee, Wisconsin, at the elegant and historic Pfister Hotel, highlighting the 1893 Victorian décor and art o Read more…

By Arno Kolster

Stanford University and UberCloud Achieve Breakthrough in Living Heart Simulations

September 21, 2017

Cardiac arrhythmia can be an undesirable and potentially lethal side effect of drugs. During this condition, the electrical activity of the heart turns chaotic, Read more…

By Wolfgang Gentzsch, UberCloud, and Francisco Sahli, Stanford University

PNNL’s Center for Advanced Tech Evaluation Seeks Wider HPC Community Ties

September 21, 2017

Two years ago the Department of Energy established the Center for Advanced Technology Evaluation (CENATE) at Pacific Northwest National Laboratory (PNNL). CENAT Read more…

By John Russell

Exascale Computing Project Names Doug Kothe as Director

September 20, 2017

The Department of Energy’s Exascale Computing Project (ECP) has named Doug Kothe as its new director effective October 1. He replaces Paul Messina, who is stepping down after two years to return to Argonne National Laboratory. Kothe is a 32-year veteran of DOE’s National Laboratory System. Read more…

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blu Read more…

By Merle Giles

Kathy Yelick Charts the Promise and Progress of Exascale Science

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakthrough Science at the Exascale” at the ACM Europe Conference in Barcelona. In conjunction with her presentation, Yelick agreed to a short Q&A discussion with HPCwire. Read more…

By Tiffany Trader

DARPA Pledges Another $300 Million for Post-Moore’s Readiness

September 14, 2017

The Defense Advanced Research Projects Agency (DARPA) launched a giant funding effort to ensure the United States can sustain the pace of electronic innovation vital to both a flourishing economy and a secure military. Under the banner of the Electronics Resurgence Initiative (ERI), some $500-$800 million will be invested in post-Moore’s Law technologies. Read more…

By Tiffany Trader

IBM Breaks Ground for Complex Quantum Chemistry

September 14, 2017

IBM has reported the use of a novel algorithm to simulate BeH2 (beryllium-hydride) on a quantum computer. This is the largest molecule so far simulated on a quantum computer. The technique, which used six qubits of a seven-qubit system, is an important step forward and may suggest an approach to simulating ever larger molecules. Read more…

By John Russell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

GlobalFoundries: 7nm Chips Coming in 2018, EUV in 2019

June 13, 2017

GlobalFoundries has formally announced that its 7nm technology is ready for customer engagement with product tape outs expected for the first half of 2018. The Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This