A Path To Energy Efficient HPC Datacenters

By Hayk Shoukourian

October 29, 2013

Energy efficiency is rapidly becoming a key factor for many modern high-performance computing (HPC) datacenters. It poses various challenges, which need to be addressed holistically and in an integrated manner, covering the HPC system environment (system hardware and system software), the hosting facility and infrastructure (cooling technologies, energy re-use, power supply chain, etc.), and applications (algorithms, performance metrics, etc.).

Most of the management schemes present in current HPC datacenters do not allow data to be shared between the HPC system environment, hosting facility, and infrastructure. But, it is important to collect and correlate data from all aspects of the datacenter in order to: better understand the interactions between different components of the datacenter; spot the improvement possibilities; and assess any introduced improvements. There are currently no tools that support a complete collection and correlation of energy efficiency relevant data, allowing for a unified view of energy consumption present in the datacenter.

That’s why a new energy measuring and evaluation toolset is being developed at the Leibniz Supercomputing Centre of the Bavarian Academy of Sciences (BAdW-LRZ) which is capable of monitoring and analysing the energy consumption of a supercomputing site in a holistic way, combining the HPC systems with data from the cooling and building infrastructure. The tool, named Power Data Aggregation Monitor (PowerDAM), allows the collection and evaluation of sensor data independently from the source systems and is capable of monitoring not only HPC systems but any other infrastructure that can be represented as a hierarchical tree. It monitors physical sensors as well as virtual sensors which can represent different functional compositions of several physical sensors.

PowerDAM provides a plug-in framework for defining the desired monitored entities such as IT systems, building infrastructure, etc. Two plug-in interfaces for each monitored entity are provided: one for sensor data collection and one for collecting application relevant data (e.g., utilized compute nodes, starting and ending timestamps of application, etc.) from system resource management tools.

PowerDAM is an underlying framework for energy efficiency related research at BAdW-LRZ.

Evaluating and Reporting

Energy-to-Solution (EtS) is an important metric for PowerDAM which denotes the aggregated energy consumption of an application consisting of the energy consumption of utilized compute nodes and partial sub-system components (e.g., system networking and system cooling).

Figure 1 presents the EtS report for an application executed on CoolMUC MPP Linux cluster. The first part of the report (part I) shows the sensor measurements for all utilized components in the order of timestamp, sensor name, value and unit.

Figure 1: EtS Report for an application executed on CoolMUC MPP Linux Cluster

Part II shows all approximations of source measurement data which were considered to be invalid (missing measurements, out of bounds data, etc.). Part III shows the aggregated energy consumption (EtS) of the executed application and provides information on the consumption percentages of computation, networking, and cooling.

The ability to calculate the EtS of an application allows for the further understanding and tuning of the application internally (via change of algorithms, memory access patterns, etc.) as well as externally through hardware adaptation (e.g., static/dynamic voltage frequency scaling).

PowerDAM provides various visualization options such as: the power draw, utilization rate, and averaged CPU temperatures of utilized compute nodes; correlation between power and load for these nodes; different EtS reports; and system power consumption for a given time frame (e.g. day, month, and year). Figure 2 illustrates one of these options – the EtS report (encompassing in parallel to the EtS, the percentages for computation, infrastructure, cooling, and networking) for all executed applications by a given user.

Figure 2: EtS Report for All Jobs Submitted by Given User

PowerDAM “node-map” view displays the dynamic behavior of compute nodes for a given sensor type. This view updates automatically after a customized amount of time and uses a color mapping to classify the behavior of the compute nodes (Figure 3).

Figure 3: Utilization Map of Compute Nodes for CoolMUC Linux Cluster. The color green illustrates the 96% to 100% utilization range. The color white illustrates the 0% and 90% to 95% utilization range. The color red illustrates the 1% to 89% utilization range. (not all compute nodes of the cluster are depicted)

The “node-map” view can be essential for understanding the interconnection between different sensor types. For example, correlating utilization rate (Figure 3) with CPU temperature (Figure 4) allows the investigation of the interdependency between utilization rates and CPU temperatures of defined compute nodes (nodes lxa130 and lxa17).

Figure 4: Temperature Map of Compute Nodes for CoolMUC Linux Cluster (2×8-core AMD CPUs per compute node)
(not all compute nodes of the cluster are depicted)

Further development will allow PowerDAM to: classify applications according to power draw, runtime, performance, and energy consumption; provide data necessary for the enhancement of the resource management systems; and report on datacenter key performance indicators (KPIs) such as PUE, ERE, DCiE, WUE, etc.

More detailed information on PowerDAM is available in the Proceedings of the First International Conference on Information and Communication Technologies for Sustainability under “Towards a Unified Energy Efficiency Evaluation Toolset: An Approach and Its Implementation at Leibniz Supercomputing Centre (LRZ)” and is indexed under DOI 10.3929/ethz-a-007337628.

The development of PowerDAM was made possible by the PRACE Second Implementation Phase project PRACE- 2IP in the Work Package “Prototyping” which has received funding from the European Community’s Seventh Framework Program (FP7/2007-2013) under grant agreement no. RI-283493 and within the SIMOPEK project which has received funding from the German Federal Ministry of Education and Research (BMBF) under grand agreement no. 01IH13007A. The work was achieved using the PRACE Research Infrastructure resources at BAdW-LRZ with support of the State of Bavaria, Germany.

The authors would like to thank Jeanette Wilde for her valuable comments and support.

Author Affiliations

Hayk Shoukourian(1,2); Torsten Wilde(1); Axel Auweter(1); Arndt Bode(1,2)

1Leibniz Supercomputing Centre of the Bavarian Academy of Sciences and Humanities (BAdW-LRZ)

2Technische Universität München (TUM), Fakultät für Informatik

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SC Bids Farewell to Denver, Heads to Dallas for 30th

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visitors to the Colorado Convention Center in Denver for the larg Read more…

By Tiffany Trader

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

How Cities Use HPC at the Edge to Get Smarter

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some cases, city managers didn’t even know existed. Speaking Read more…

By Doug Black

HPE Extreme Performance Solutions

Harness Scalable Petabyte Storage with HPE Apollo 4510 and HPE StoreEver

As a growing number of connected devices challenges IT departments to rapidly collect, manage, and store troves of data, organizations must adopt a new generation of IT to help them operate quickly and intelligently. Read more…

SC17 Student Cluster Competition Configurations: Fewer Nodes, Way More Accelerators

November 16, 2017

The final configurations for each of the SC17 “Donnybrook in Denver” Student Cluster Competition have been released. Fortunately, each team received their equipment shipments on time and undamaged, so the teams are r Read more…

By Dan Olds

SC Bids Farewell to Denver, Heads to Dallas for 30th

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visit Read more…

By Tiffany Trader

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

How Cities Use HPC at the Edge to Get Smarter

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some Read more…

By Doug Black

Student Cluster LINPACK Record Shattered! More LINs Packed Than Ever before!

November 16, 2017

Nanyang Technological University, the pride of Singapore, utterly destroyed the Student Cluster Competition LINPACK record by posting a score of 51.77 TFlop/s a Read more…

By Dan Olds

Hyperion Market Update: ‘Decent’ Growth Led by HPE; AI Transparency a Risk Issue

November 15, 2017

The HPC market update from Hyperion Research (formerly IDC) at the annual SC conference is a business and social “must,” and this year’s presentation at S Read more…

By Doug Black

Nvidia Focuses Its Cloud Containers on HPC Applications

November 14, 2017

Having migrated its top-of-the-line datacenter GPU to the largest cloud vendors, Nvidia is touting its Volta architecture for a range of scientific computing ta Read more…

By George Leopold

HPE Launches ARM-based Apollo System for HPC, AI

November 14, 2017

HPE doubled down on its memory-driven computing vision while expanding its processor portfolio with the announcement yesterday of the company’s first ARM-base Read more…

By Doug Black

OpenACC Shines in Global Climate/Weather Codes

November 14, 2017

OpenACC, the directive-based parallel programming model used mostly for porting codes to GPUs for use on heterogeneous systems, came to SC17 touting impressive Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This