Back to the Future of Serial Speed?

By Bill Sembrat

October 30, 2013

For the last few decades we have had great increases in performance. Since going to “off-the-shelf components” and riding on the tails of increasing processor improvements along with ever greater number of chips and cores some have come to realize that this can’t go on forever.

We have filled up a number of ever-bigger rooms with racks and racks until we have come face to face with having to own your own power company just for the power needed to run these complexes. On another front I would have expected more concerns about the high cost of these high-end systems.

It also seems that others are raising doubts because recently there has been a lot questions, concerns, discussions, comments, articles about the problems, and enough concerns about the way forward to even provide extra funding, but few seem to looking at root issues and saying that moving forward things need to change.

We have been lucky to ride the train so far, much longer and further than those of us would have ever imaged. But, now it has become ever harder and more costly to keep the train going. So lets take a deeper look at the road traveled. About 20 years ago the HPC train switched paths from custom processors and custom systems to off-the-shelf processors and systems. It has been a good and fruitful ride.

I think it would be very wise to notice that recently most of the speed improvement has come from the parallel side. I (we) was always highly focused on the serial side. At this point maybe I should say something about myself. I was fortunate to have worked with Seymour Cray for many years. So, the we, I am referring to, is my involvement and experience with Seymour and Seymour’s machines. Seymour was never in any race and not really concerned about what someone else may be doing or not doing, but always interested in exploring and pushing serial speed on real workloads. We were mainly focused on serial speed because it kept things simple and made systems easier to use, easier to program, with less overhead and higher system efficiencies.

Few may have ever talked to Seymour about serial speed vs. parallel speed, but I can tell you that Seymour was always quite aware and disciplined himself to stay focused on serial speed improvements. He felt he could contribute more, add more value, was personally more challenging, and he very much like to work on, enjoyed working on serial improvements.

Although, he would never admit it, he also knew that he was the “king” of serial speed. Just a side comment, Seymour was also interested in exploring the far end of parallel processors and we had a running prototype parallel machine that had a design goal of 30,000,000 processors, but that is quite another story. Getting back to this topic we were really always highly focused on serial speed with the “Cray’s.” Over the last 20 odd years the current off-the-shelf path has relied on serial speed improvements but ever more increasingly on greater and greater parallel speed improvements. Parallel speed improvements has, naturally, associated with it higher overhead and power costs along with lower system efficiencies and now ever higher costs to get into the top of the list.

So to get large cost effective improvements I think that we now need to re-focus back to serial speed improvements. I believe that by addressing serial speed improvements that speed improvements of 50X+ can be achieved because we were addressing root level changes that could lead to these kinds of improvements. This quickly leads one to a startling conclusion that memory can’t keep up, does not work and becomes the big elephant in the room. So you really need to look at how memory is used and really the only way to see it is to wipe the slate clean and get rid of memory. In order to think about it you need first get rid of it and start again fresh. Very few may be up to the task of starting fresh with a blank sheet. This is a rather hard task and not as simple as one may think.

While Seymour always preferred blank paper pads with faint light blue lines and number 2 pencils, at a time, it seemed, everyone started using computers and in some cases even “Cray” Super Computers to design the “next” machine. Einstein never needed or used a computer for his theories and I would guess that Peter Higgs didn’t use one either. Giant leaps and great things seem to come from very simple root ideas. Also can-do-positive attitudes play a most, maybe the most important part, even over seemingly impossible tasks.

The memory model currently used is largely based on a 70-year-old model. Oh, if you can wake up the guys that came up with the model, that were in the farm house/barn in Princeton at the time, they would be quite amazed at the great strides and progress but in very short order they would be able to program today’s machines – so in some ways things really haven’t changed much. Other areas will need to be addressed and changed, but memory is the first and most looming problem. Because these changes are deeper root issues they should be hidden from users and even and from most of the vast layers of existing software. Funny you may think that this is new but most was tried and used years ago, but never commercialized and sometimes discarded because of lack of the-then-current available technology.

Well, yes I do believe that by addressing some deep root issues that over time large serial speed improvements can be achieved, but to use them you will quickly come to the several conclusions including that you must deal with new ways to see and use memory and all that this implies. To achieve very large improvements, I think, the focus needs to be on very several very fundamental and root changes and then apply all the parallel knowledge and improvements made over the last 20 years. Now here, I believe, may be a bigger problem. In the US we have been blessed with chip and system vendors that have been able to supply ever-increasing speeds and lots of chips and cores so we have been glued to that path but others may be unencumbered, highly motivated and more able to do something new and different.

Although they may operate under different set of rules and have additional other problems they do not have as much invested in existing ideas, enterprises, hard plant and equipment; and may be less locked in and may be more willing to change pathways. So I am concerned with our current shortsighted attitude and lack of “Americanism” in keeping the leadership local.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HPE to provide the DoD High Performance Computing Modernizatio Read more…

By Tiffany Trader

Topological Quantum Superconductor Progress Reported

February 20, 2018

Overcoming sensitivity to decoherence is a persistent stumbling block in efforts to build effective quantum computers. Now, a group of researchers from Chalmers University of Technology (Sweden) report progress in devisi Read more…

By John Russell

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penalties to HPC applications. Even as these patches are rolled o Read more…

By Pete Beckman

HPE Extreme Performance Solutions

Safeguard Your HPC Environment with the World’s Most Secure Industry Standard Servers

Today’s organizations operate in an environment with ever-evolving threats, and in order to protect themselves they must continuously bolster their security strategy. Hewlett Packard Enterprise (HPE) and Intel® are addressing modern security challenges with the world’s most secure industry standard servers powered by the latest generation of Intel® Xeon® Scalable processors. Read more…

Intel Touts Silicon Spin Qubits for Quantum Computing

February 14, 2018

Debate around what makes a good qubit and how best to manufacture them is a sprawling topic. There are many insistent voices favoring one or another approach. Referencing a paper published today in Nature, Intel has offe Read more…

By John Russell

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penal Read more…

By Pete Beckman

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

The Food Industry’s Next Journey — from Mars to Exascale

February 12, 2018

Global food producer and one of the world's leading chocolate companies Mars Inc. has a unique perspective on the impact that exascale computing will have on the food industry. Read more…

By Scott Gibson, Oak Ridge National Laboratory

Singularity HPC Container Start-Up – Sylabs – Emerges from Stealth

February 8, 2018

The driving force behind Singularity, the popular HPC container technology, is bringing the open source platform to the enterprise with the launch of a new vent Read more…

By George Leopold

Dell EMC Debuts PowerEdge Servers with AMD EPYC Chips

February 6, 2018

AMD notched another EPYC processor win today with Dell EMC’s introduction of three PowerEdge servers (R6415, R7415, and R7425) based on the EPYC 7000-series p Read more…

By John Russell

‘Next Generation’ Universe Simulation Is Most Advanced Yet

February 5, 2018

The research group that gave us the most detailed time-lapse simulation of the universe’s evolution in 2014, spanning 13.8 billion years of cosmic evolution, is back in the spotlight with an even more advanced cosmological model that is providing new insights into how black holes influence the distribution of dark matter, how heavy elements are produced and distributed, and where magnetic fields originate. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

V100 Good but not Great on Select Deep Learning Aps, Says Xcelerit

November 27, 2017

Wringing optimum performance from hardware to accelerate deep learning applications is a challenge that often depends on the specific application in use. A benc Read more…

By John Russell

SC17: Singularity Preps Version 3.0, Nears 1M Containers Served Daily

November 1, 2017

Just a few months ago about half a million jobs were being run daily using Singularity containers, the LBNL-founded container platform intended for HPC. That wa Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This