Affordable Big Data Computing

November 1, 2013

Big Data applications  – once limited to a few exotic disciplines – are steadily becoming the dominant feature of modern computing. In industry after industry advanced instruments and sensor technology are generating massive datasets. Numascale Image 1Consider just one example, next generation DNA sequencing (NGS). Annual NGS capacity now exceeds 13 quadrillion base pairs (the As, Ts, Gs, and Cs that make up a DNA sequence). Each base pair represents roughly 100bytes of data (raw, analyzed, and interpreted). Turning the swelling sea of genomic data into useful biomedical information is a classic Big Data challenge, one of many, that didn’t exist a decade ago.

This mainstreaming of Big Data is an important transformational moment in computation. Datasets in the 10-to-20 Terabytes (TB) range are increasingly common. New and advanced algorithms for memory-intensive applications in Oil & Gas (e.g. seismic data processing), finance (real-time trading), social media (database), and science (simulation and data analysis), to name but a few, are hard or impossible to run efficiently on commodity clusters.

The challenge is that traditional cluster computing based on distributed memory – which was so successful in bringing down the cost of high performance computing (HPC) – struggles when forced to run applications where memory requirements exceed the capacity of a single node. Increased interconnect latencies, longer and more complicated software development, inefficient system utilization, and additional administrative overhead are all adverse factors. Conversely, traditional mainframes running shared memory architecture and a single instance of the OS have always coped well with Big Data Crunching jobs.

“Any application requiring a large memory footprint can benefit from a shared memory computing environment,” says William W. Thigpen, Chief, Engineering Branch, NASA Advanced Supercomputing (NAS) Division. “We first became interested in shared memory to simplify the programming paradigm. So much of what you must do to run on a traditional system is pack up the messages and the data and account for what happens if those messages don’t get there successfully and things like that – there is a lot of error processing that occurs.”

“If you truly take advantage of the shared memory architecture you can throw away a lot of the code you have to develop to run on a more traditional system. I think we are going to see a lot more people looking at this type of environment,” Thigpen says. Not only is development eased, but throughput and accuracy are also improved, the latter by allowing execution of more computationally demanding algorithms.

Numascale’s Solution

Until now, the biggest obstacle to wider use of shared memory computing has been the high cost of mainframes and high-end ‘super-servers’. Given the ongoing proliferation of Big Data applications, a more efficient and cost-effective approach to shared memory computing is needed. Now has developed a technology, NumaConnect, which turns a collection of standard servers with separate memories and I/O into a unified system that delivers the functionality of high-end enterprise servers and mainframes at a fraction of the cost.

  • NumaConnect links commodity servers together to form a single unified system where all processors can coherently access and share all memory and I/O. The combined system runs a single instance of a standard operating system like Linux.
  • Systems based on NumaConnect support all classes of applications using shared memory or message passing through all popular high level programming models. System size can be scaled to 4k nodes where each node can contain multiple processors. Memory size is limited only by the 48-bit physical address range provided by the Opteron processors resulting in a record-breaking total system main memory of 256 TBytes. (For details of Numascale technology see http://www.numascale.com/numa_pdfs/numaconnect-white-paper.pdf )

The result is an affordable, shared memory computing option to tackle data-intensive applications. NumaConnect-based systems running with entire data sets in memory are “orders of magnitude faster than clusters or systems based on any form of existing mass- storage devices and will enable data analysis and decision support applications to be applied in new and innovative ways,” says Einar Rustad, Numascale CTO.

The big differentiator for NumaConnect compared to other high-speed interconnect technologies is the shared memory and cache coherency mechanisms. These features allow programs to access any memory location and any memory mapped I/O device in a multiprocessor system with high degree of efficiency. It provides scalable systems with a unified programming model that stays the same from the small multi-core machines used in laptops and desktops to the largest imaginable single system image machines that may contain thousands of processors and tens to hundreds of terabytes of main memory.

Early adopters are already demonstrating performance gains and costs savings. A good example is Statoil, the global energy company based in Norway. Processing seismic data requires massive amounts of floating point operations and is normally performed on clusters. Broadly speaking, this kind of processing is done by programs developed for a message-passing paradigm (MPI). Not all algorithms are suited for the message passing paradigm and the amount of code required is huge and the development process and debugging task are complex.

Shorten Time To Solution

“We have used development funds to create a foundation for a simpler programming model. The goal is to reduce the time it takes to implement new mathematical models for the computer,” says Knut Sebastian Tungland Chief Engineer IT, Statoil. To address this issue, Statoil has set up a joint research project with Numascale who has developed technology to interconnect multiple computers to form a single system with cache coherent shared memory. Statoil was able to run a preferred application to analyze large seismic datasets on a NumaConnect-enabled system – something that wasn’t practical on a traditional cluster because of the application’s access pattern to memory. Not only did use of the more rigorous application produce more accurate results, but the NumaConnect-based system completed the task more quickly.

A second example is deployment of a large NumaConnect-based system at the University of Oslo. In this instance, the effort is being funded by the EU project PRACE (Partnership for Advanced Computing in Europe) and includes a 72-node cluster of IBM x3755s. Some of the main applications planned in Oslo include bioscience and computational chemistry. The overall goal is to broadly enable Big Data computing at the university.

“We focus on providing our users with flexible computing resources including capabilities for handling very large datasets like those found in applications for next generation sequencing for life sciences” says Dr. Ole W. Saastad, Senior Analyst and HPC expert at USIT, the University of Oslo’s central IT resource department. “Our new system with NumaConnect contains 1728 processor cores and 4.6TBytes of memory. The system can be used as one single system or partitioned in smaller systems where each partition runs one instance of the OS. With proper Numa-awareness, applications with high bandwidth requirements will be able to utilize the combined bandwidth of all the memory controllers and still be able to share data with low latency access through the coherent shared memory.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 8, 2016)

December 8, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Qualcomm Targets Intel Datacenter Dominance with 10nm ARM-based Server Chip

December 8, 2016

Claiming no less than a reshaping of the future of Intel-dominated datacenter computing, Qualcomm Technologies, the market leader in smartphone chips, announced the forthcoming availability of what it says is the world’s first 10nm processor for servers, based on ARM Holding’s chip designs. Read more…

By Doug Black

Which Schools Produce the Top Coders in the World?

December 8, 2016

Ever wonder which universities worldwide produce the best coders? The answers may surprise you, at least as judged by the results of a competition posted yesterday on the HackerRank blog. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

Leading Solution Providers

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This