Affordable Big Data Computing

November 1, 2013

Big Data applications  – once limited to a few exotic disciplines – are steadily becoming the dominant feature of modern computing. In industry after industry advanced instruments and sensor technology are generating massive datasets. Numascale Image 1Consider just one example, next generation DNA sequencing (NGS). Annual NGS capacity now exceeds 13 quadrillion base pairs (the As, Ts, Gs, and Cs that make up a DNA sequence). Each base pair represents roughly 100bytes of data (raw, analyzed, and interpreted). Turning the swelling sea of genomic data into useful biomedical information is a classic Big Data challenge, one of many, that didn’t exist a decade ago.

This mainstreaming of Big Data is an important transformational moment in computation. Datasets in the 10-to-20 Terabytes (TB) range are increasingly common. New and advanced algorithms for memory-intensive applications in Oil & Gas (e.g. seismic data processing), finance (real-time trading), social media (database), and science (simulation and data analysis), to name but a few, are hard or impossible to run efficiently on commodity clusters.

The challenge is that traditional cluster computing based on distributed memory – which was so successful in bringing down the cost of high performance computing (HPC) – struggles when forced to run applications where memory requirements exceed the capacity of a single node. Increased interconnect latencies, longer and more complicated software development, inefficient system utilization, and additional administrative overhead are all adverse factors. Conversely, traditional mainframes running shared memory architecture and a single instance of the OS have always coped well with Big Data Crunching jobs.

“Any application requiring a large memory footprint can benefit from a shared memory computing environment,” says William W. Thigpen, Chief, Engineering Branch, NASA Advanced Supercomputing (NAS) Division. “We first became interested in shared memory to simplify the programming paradigm. So much of what you must do to run on a traditional system is pack up the messages and the data and account for what happens if those messages don’t get there successfully and things like that – there is a lot of error processing that occurs.”

“If you truly take advantage of the shared memory architecture you can throw away a lot of the code you have to develop to run on a more traditional system. I think we are going to see a lot more people looking at this type of environment,” Thigpen says. Not only is development eased, but throughput and accuracy are also improved, the latter by allowing execution of more computationally demanding algorithms.

Numascale’s Solution

Until now, the biggest obstacle to wider use of shared memory computing has been the high cost of mainframes and high-end ‘super-servers’. Given the ongoing proliferation of Big Data applications, a more efficient and cost-effective approach to shared memory computing is needed. Now has developed a technology, NumaConnect, which turns a collection of standard servers with separate memories and I/O into a unified system that delivers the functionality of high-end enterprise servers and mainframes at a fraction of the cost.

  • NumaConnect links commodity servers together to form a single unified system where all processors can coherently access and share all memory and I/O. The combined system runs a single instance of a standard operating system like Linux.
  • Systems based on NumaConnect support all classes of applications using shared memory or message passing through all popular high level programming models. System size can be scaled to 4k nodes where each node can contain multiple processors. Memory size is limited only by the 48-bit physical address range provided by the Opteron processors resulting in a record-breaking total system main memory of 256 TBytes. (For details of Numascale technology see http://www.numascale.com/numa_pdfs/numaconnect-white-paper.pdf )

The result is an affordable, shared memory computing option to tackle data-intensive applications. NumaConnect-based systems running with entire data sets in memory are “orders of magnitude faster than clusters or systems based on any form of existing mass- storage devices and will enable data analysis and decision support applications to be applied in new and innovative ways,” says Einar Rustad, Numascale CTO.

The big differentiator for NumaConnect compared to other high-speed interconnect technologies is the shared memory and cache coherency mechanisms. These features allow programs to access any memory location and any memory mapped I/O device in a multiprocessor system with high degree of efficiency. It provides scalable systems with a unified programming model that stays the same from the small multi-core machines used in laptops and desktops to the largest imaginable single system image machines that may contain thousands of processors and tens to hundreds of terabytes of main memory.

Early adopters are already demonstrating performance gains and costs savings. A good example is Statoil, the global energy company based in Norway. Processing seismic data requires massive amounts of floating point operations and is normally performed on clusters. Broadly speaking, this kind of processing is done by programs developed for a message-passing paradigm (MPI). Not all algorithms are suited for the message passing paradigm and the amount of code required is huge and the development process and debugging task are complex.

Shorten Time To Solution

“We have used development funds to create a foundation for a simpler programming model. The goal is to reduce the time it takes to implement new mathematical models for the computer,” says Knut Sebastian Tungland Chief Engineer IT, Statoil. To address this issue, Statoil has set up a joint research project with Numascale who has developed technology to interconnect multiple computers to form a single system with cache coherent shared memory. Statoil was able to run a preferred application to analyze large seismic datasets on a NumaConnect-enabled system – something that wasn’t practical on a traditional cluster because of the application’s access pattern to memory. Not only did use of the more rigorous application produce more accurate results, but the NumaConnect-based system completed the task more quickly.

A second example is deployment of a large NumaConnect-based system at the University of Oslo. In this instance, the effort is being funded by the EU project PRACE (Partnership for Advanced Computing in Europe) and includes a 72-node cluster of IBM x3755s. Some of the main applications planned in Oslo include bioscience and computational chemistry. The overall goal is to broadly enable Big Data computing at the university.

“We focus on providing our users with flexible computing resources including capabilities for handling very large datasets like those found in applications for next generation sequencing for life sciences” says Dr. Ole W. Saastad, Senior Analyst and HPC expert at USIT, the University of Oslo’s central IT resource department. “Our new system with NumaConnect contains 1728 processor cores and 4.6TBytes of memory. The system can be used as one single system or partitioned in smaller systems where each partition runs one instance of the OS. With proper Numa-awareness, applications with high bandwidth requirements will be able to utilize the combined bandwidth of all the memory controllers and still be able to share data with low latency access through the coherent shared memory.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Machine Learning at HPC User Forum: Drilling into Specific Use Cases

September 22, 2017

The 66th HPC User Forum held September 5-7, in Milwaukee, Wisconsin, at the elegant and historic Pfister Hotel, highlighting the 1893 Victorian décor and art of “The Grand Hotel Of The West,” contrasted nicely with Read more…

By Arno Kolster

Google Cloud Makes Good on Promise to Add Nvidia P100 GPUs

September 21, 2017

Google has taken down the notice on its cloud platform website that says Nvidia Tesla P100s are “coming soon.” That's because the search giant has announced the beta launch of the high-end P100 Nvidia Tesla GPUs on t Read more…

By George Leopold

Cray Wins $48M Supercomputer Contract from KISTI

September 21, 2017

It was a good day for Cray which won a $48 million contract from the Korea Institute of Science and Technology Information (KISTI) for a 128-rack CS500 cluster supercomputer. The new system, equipped with Intel Xeon Scal Read more…

By John Russell

HPE Extreme Performance Solutions

HPE Prepares Customers for Success with the HPC Software Portfolio

High performance computing (HPC) software is key to harnessing the full power of HPC environments. Development and management tools enable IT departments to streamline installation and maintenance of their systems as well as create, optimize, and run their HPC applications. Read more…

Adolfy Hoisie to Lead Brookhaven’s Computing for National Security Effort

September 21, 2017

Brookhaven National Laboratory announced today that Adolfy Hoisie will chair its newly formed Computing for National Security department, which is part of Brookhaven’s new Computational Science Initiative (CSI). Read more…

By John Russell

Machine Learning at HPC User Forum: Drilling into Specific Use Cases

September 22, 2017

The 66th HPC User Forum held September 5-7, in Milwaukee, Wisconsin, at the elegant and historic Pfister Hotel, highlighting the 1893 Victorian décor and art o Read more…

By Arno Kolster

Stanford University and UberCloud Achieve Breakthrough in Living Heart Simulations

September 21, 2017

Cardiac arrhythmia can be an undesirable and potentially lethal side effect of drugs. During this condition, the electrical activity of the heart turns chaotic, Read more…

By Wolfgang Gentzsch, UberCloud, and Francisco Sahli, Stanford University

PNNL’s Center for Advanced Tech Evaluation Seeks Wider HPC Community Ties

September 21, 2017

Two years ago the Department of Energy established the Center for Advanced Technology Evaluation (CENATE) at Pacific Northwest National Laboratory (PNNL). CENAT Read more…

By John Russell

Exascale Computing Project Names Doug Kothe as Director

September 20, 2017

The Department of Energy’s Exascale Computing Project (ECP) has named Doug Kothe as its new director effective October 1. He replaces Paul Messina, who is stepping down after two years to return to Argonne National Laboratory. Kothe is a 32-year veteran of DOE’s National Laboratory System. Read more…

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blu Read more…

By Merle Giles

Kathy Yelick Charts the Promise and Progress of Exascale Science

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakthrough Science at the Exascale” at the ACM Europe Conference in Barcelona. In conjunction with her presentation, Yelick agreed to a short Q&A discussion with HPCwire. Read more…

By Tiffany Trader

DARPA Pledges Another $300 Million for Post-Moore’s Readiness

September 14, 2017

The Defense Advanced Research Projects Agency (DARPA) launched a giant funding effort to ensure the United States can sustain the pace of electronic innovation vital to both a flourishing economy and a secure military. Under the banner of the Electronics Resurgence Initiative (ERI), some $500-$800 million will be invested in post-Moore’s Law technologies. Read more…

By Tiffany Trader

IBM Breaks Ground for Complex Quantum Chemistry

September 14, 2017

IBM has reported the use of a novel algorithm to simulate BeH2 (beryllium-hydride) on a quantum computer. This is the largest molecule so far simulated on a quantum computer. The technique, which used six qubits of a seven-qubit system, is an important step forward and may suggest an approach to simulating ever larger molecules. Read more…

By John Russell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

GlobalFoundries: 7nm Chips Coming in 2018, EUV in 2019

June 13, 2017

GlobalFoundries has formally announced that its 7nm technology is ready for customer engagement with product tape outs expected for the first half of 2018. The Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This