Affordable Big Data Computing

November 1, 2013

Big Data applications  – once limited to a few exotic disciplines – are steadily becoming the dominant feature of modern computing. In industry after industry advanced instruments and sensor technology are generating massive datasets. Numascale Image 1Consider just one example, next generation DNA sequencing (NGS). Annual NGS capacity now exceeds 13 quadrillion base pairs (the As, Ts, Gs, and Cs that make up a DNA sequence). Each base pair represents roughly 100bytes of data (raw, analyzed, and interpreted). Turning the swelling sea of genomic data into useful biomedical information is a classic Big Data challenge, one of many, that didn’t exist a decade ago.

This mainstreaming of Big Data is an important transformational moment in computation. Datasets in the 10-to-20 Terabytes (TB) range are increasingly common. New and advanced algorithms for memory-intensive applications in Oil & Gas (e.g. seismic data processing), finance (real-time trading), social media (database), and science (simulation and data analysis), to name but a few, are hard or impossible to run efficiently on commodity clusters.

The challenge is that traditional cluster computing based on distributed memory – which was so successful in bringing down the cost of high performance computing (HPC) – struggles when forced to run applications where memory requirements exceed the capacity of a single node. Increased interconnect latencies, longer and more complicated software development, inefficient system utilization, and additional administrative overhead are all adverse factors. Conversely, traditional mainframes running shared memory architecture and a single instance of the OS have always coped well with Big Data Crunching jobs.

“Any application requiring a large memory footprint can benefit from a shared memory computing environment,” says William W. Thigpen, Chief, Engineering Branch, NASA Advanced Supercomputing (NAS) Division. “We first became interested in shared memory to simplify the programming paradigm. So much of what you must do to run on a traditional system is pack up the messages and the data and account for what happens if those messages don’t get there successfully and things like that – there is a lot of error processing that occurs.”

“If you truly take advantage of the shared memory architecture you can throw away a lot of the code you have to develop to run on a more traditional system. I think we are going to see a lot more people looking at this type of environment,” Thigpen says. Not only is development eased, but throughput and accuracy are also improved, the latter by allowing execution of more computationally demanding algorithms.

Numascale’s Solution

Until now, the biggest obstacle to wider use of shared memory computing has been the high cost of mainframes and high-end ‘super-servers’. Given the ongoing proliferation of Big Data applications, a more efficient and cost-effective approach to shared memory computing is needed. Now has developed a technology, NumaConnect, which turns a collection of standard servers with separate memories and I/O into a unified system that delivers the functionality of high-end enterprise servers and mainframes at a fraction of the cost.

  • NumaConnect links commodity servers together to form a single unified system where all processors can coherently access and share all memory and I/O. The combined system runs a single instance of a standard operating system like Linux.
  • Systems based on NumaConnect support all classes of applications using shared memory or message passing through all popular high level programming models. System size can be scaled to 4k nodes where each node can contain multiple processors. Memory size is limited only by the 48-bit physical address range provided by the Opteron processors resulting in a record-breaking total system main memory of 256 TBytes. (For details of Numascale technology see http://www.numascale.com/numa_pdfs/numaconnect-white-paper.pdf )

The result is an affordable, shared memory computing option to tackle data-intensive applications. NumaConnect-based systems running with entire data sets in memory are “orders of magnitude faster than clusters or systems based on any form of existing mass- storage devices and will enable data analysis and decision support applications to be applied in new and innovative ways,” says Einar Rustad, Numascale CTO.

The big differentiator for NumaConnect compared to other high-speed interconnect technologies is the shared memory and cache coherency mechanisms. These features allow programs to access any memory location and any memory mapped I/O device in a multiprocessor system with high degree of efficiency. It provides scalable systems with a unified programming model that stays the same from the small multi-core machines used in laptops and desktops to the largest imaginable single system image machines that may contain thousands of processors and tens to hundreds of terabytes of main memory.

Early adopters are already demonstrating performance gains and costs savings. A good example is Statoil, the global energy company based in Norway. Processing seismic data requires massive amounts of floating point operations and is normally performed on clusters. Broadly speaking, this kind of processing is done by programs developed for a message-passing paradigm (MPI). Not all algorithms are suited for the message passing paradigm and the amount of code required is huge and the development process and debugging task are complex.

Shorten Time To Solution

“We have used development funds to create a foundation for a simpler programming model. The goal is to reduce the time it takes to implement new mathematical models for the computer,” says Knut Sebastian Tungland Chief Engineer IT, Statoil. To address this issue, Statoil has set up a joint research project with Numascale who has developed technology to interconnect multiple computers to form a single system with cache coherent shared memory. Statoil was able to run a preferred application to analyze large seismic datasets on a NumaConnect-enabled system – something that wasn’t practical on a traditional cluster because of the application’s access pattern to memory. Not only did use of the more rigorous application produce more accurate results, but the NumaConnect-based system completed the task more quickly.

A second example is deployment of a large NumaConnect-based system at the University of Oslo. In this instance, the effort is being funded by the EU project PRACE (Partnership for Advanced Computing in Europe) and includes a 72-node cluster of IBM x3755s. Some of the main applications planned in Oslo include bioscience and computational chemistry. The overall goal is to broadly enable Big Data computing at the university.

“We focus on providing our users with flexible computing resources including capabilities for handling very large datasets like those found in applications for next generation sequencing for life sciences” says Dr. Ole W. Saastad, Senior Analyst and HPC expert at USIT, the University of Oslo’s central IT resource department. “Our new system with NumaConnect contains 1728 processor cores and 4.6TBytes of memory. The system can be used as one single system or partitioned in smaller systems where each partition runs one instance of the OS. With proper Numa-awareness, applications with high bandwidth requirements will be able to utilize the combined bandwidth of all the memory controllers and still be able to share data with low latency access through the coherent shared memory.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Long Flights to Cluster Fights: Meet the Asian Student Cluster Teams

November 22, 2017

Five teams from Asia traveled thousands of miles to compete at the SC17 Student Cluster Competition in Denver. Our cameras were there to meet ‘em, greet ‘em, and grill ‘em about their clusters and how they’re doi Read more…

By Dan Olds

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open question. The latest geo-region to throw its hat in the quantum co Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshop Read more…

By Andrew Jones

HPE Extreme Performance Solutions

HPE Wins “Best HPC Server” for the Apollo 6000 Gen10 System

Hewlett Packard Enterprise (HPE) was nominated for 14 HPCwire Readers’ and Editors’ Choice Awards—including “Best High Performance Computing (HPC) Server Product or Technology” and “Top Supercomputing Achievement.” The HPE Apollo 6000 Gen10 was named “Best HPC Server” of 2017. Read more…

Turnaround Complete, HPE’s Whitman Departs

November 22, 2017

Having turned around the aircraft carrier the Silicon Valley icon had become, Meg Whitman is leaving the helm of a restructured Hewlett Packard. Her successor, technologist Antonio Neri will now guide what Whitman assert Read more…

By George Leopold

Long Flights to Cluster Fights: Meet the Asian Student Cluster Teams

November 22, 2017

Five teams from Asia traveled thousands of miles to compete at the SC17 Student Cluster Competition in Denver. Our cameras were there to meet ‘em, greet ‘em Read more…

By Dan Olds

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC Read more…

By Andrew Jones

SC Bids Farewell to Denver, Heads to Dallas for 30th Anniversary

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visit Read more…

By Tiffany Trader

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

How Cities Use HPC at the Edge to Get Smarter

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some Read more…

By Doug Black

Student Cluster LINPACK Record Shattered! More LINs Packed Than Ever before!

November 16, 2017

Nanyang Technological University, the pride of Singapore, utterly destroyed the Student Cluster Competition LINPACK record by posting a score of 51.77 TFlop/s a Read more…

By Dan Olds

Hyperion Market Update: ‘Decent’ Growth Led by HPE; AI Transparency a Risk Issue

November 15, 2017

The HPC market update from Hyperion Research (formerly IDC) at the annual SC conference is a business and social “must,” and this year’s presentation at S Read more…

By Doug Black

Nvidia Focuses Its Cloud Containers on HPC Applications

November 14, 2017

Having migrated its top-of-the-line datacenter GPU to the largest cloud vendors, Nvidia is touting its Volta architecture for a range of scientific computing ta Read more…

By George Leopold

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

SC17 Booth Video Tours

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Share This