LLNL Seeks Big Data System Balance with Catalyst

By Nicole Hemsoth

November 4, 2013

This morning Lawrence Livermore National Lab (LLNL) announced a new, purpose-built system designed to tackle specific data-intensive problems using some unique approaches to addressing I/O issues for key “big data” applications in bioinformatics and beyond.

The new Cray CS300 324-node system, dubbed Catalyst, will be bestowed with its inaugural applications sometime in December. Delivered in October, the 150 teraflop cluster sports some notable specs, which LLNL and Intel have commented on in detail below.

324 total nodes (128 GB DRAM)
150 TFlops
304 compute nodes (128 GB DRAM and 800GB NVRAM per node)
12 Lustre router nodes (128 GB DRAM and 3,200GB NVRAM per node)
2 Login nodes (128 GB DRAM) – 2 Management nodes (128 GB DRAM)
Processors – Intel Xeon processor E5-2695v2 (12 cores, 2.4Ghz)
NVRAM – Intel SSD 910 Series (800GB, 1/2 Height PCIe 2.0, 25nm, MLC)
Fabrics – Intel TrueScale Fabric (QDR-80)
Storage Software – Intel Lustre, Livermore’s DIMMAP (Data Intensive MMAP) and SCR (Scalable Checkpoint Restart)
One thing that might pop out immediately about these configuration details is that some unique choices have been made in the name of enhancing I/O and overall system balance. The 12-core processor choice, the use of QDR-80, and NVRAM all point to some serious thought about balancing architecture to the requirements of emerging classes of “big data” applications.

As one might imagine scanning the specs list, the spend here is not insignificant, but for a lab that’s focused on HPC, the real thrust of the investment is in the interconnect and I/O tooling versus sheer processing horsepower.

According to Matt Leininger, Deputy of Advanced Technology Projects at Lawrence Livermore National Lab, the combination of non-volatile memory, the latest Intel processors and special focus on the interconnect create the perfect storm for certain data-intensive applications, including those in bioinformatics, as well as for graph analytics and analyzing HPC simulation data.

One of the keys to the system’s data-intensive focus is the choice to use NVRAM in a novel way using some custom-developed technology. LLNL has a number of smaller flash-based clusters that they’ve been tweaking in terms of application middleware or at the OS level so that they can take advantage of NVRAM. During their exploration, they started looking at possible alternatives to the standard MMAP to allow applications to access the NVRAM as if it was actual DRAM memory. The result is their own Data-Intensive MMAP (DIMMAP) which handles the intelligence of the caching process and outshines Linux MMAP.

Leininger pointed to a bioinformatics application that had scaling problems. It now uses their DIMMAP technology on the backend to load large databases into NVRAM, enabling a new set of analytical options that weren’t possible before (or required reads and writes from disk, which killed performance). They have already been able to demo the success of DIMMAP on a smaller research cluster and the team is looking forward to taking advantage of Catalayst.

Mark Seager, CTO of Technical Computing at Intel, these choices push the relatively small Catalyst into 60 million IOPS territory. As he explained, “These devices are in the range of 150-200k IOPS per device and Catalyst has one on every node, so there’s 300 of them on compute nodes—and three on the buffer nodes. The bandwidth in aggregate out of these flash devices is comparable to what’s on the Sequoia system. They have a half terabyte per second of IO bandwidth out of Sequoia to a Luster parallel file system and we’ll have a half terabyte per second at these IOPS rates to these local flash drives on catalyst at a fraction of the cost. That’s a game changer.”

The other “game changer” for Livermore is hopping the single-rail barrier. As Leiniger noted, LLNL has been a TrueScale QDR shop for several years, but this system marks a new phase in that usage with their shift into dual-rail. With a typical cluster, if there’s one HAD it’s directly connected to one socket and while network performance off that one is great, when you communicate to the other, the extra hops sling a performance hit. As Leininger said, “dual rail offers more balanced performance and we expect that the dual rail QDR will be as good or better than any other technology on the market.”

According to Seager, “Even though EDR is faster in terms of the transmission rate per channel, the fact that we have two QDR channels in aggregate means there’s a lot more bandwidth coming off the node than with EDR. Since the TrueScale fabric does most the processing in software o the cores, as you go with a highly parallel processor, it’s possible to scale much better with one MPI task per core.”

Seager continued pointing out that even though while not all the bandwidth is available per channel, this is not really the issue because it’s not really used that way. “You never use it with one MPI task or one processor trying to use the whole channel. Typically, all of the MPI tasks on the node are all trying to use the interface and it’s really that aggregate throughput.”

Leininger said that this is an ideal configuration as they have several PCIe flash cards on the gateway nodes, which are separated and attached to PCIe directly. This means it’s possible to directly from the adapter to the processor without having to transfer across QPI. “It’s well balanced in terms of bandwidth of PCIe flash and the QDR interconnect,” he concluded.

One of the reasons why Intel is interested in this configuration is that they’re looking at how the usage of the system will evolve around LLNL’s emerging data intensive computing model. As Seager said, “there are specific apps that have been targeted but we’re also looking at how, once people start looking at this architecture differently, they’ll come up with new use models to help us learn what the next generation of applications will look like.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

UCSD, AIST Forge Tighter Alliance with AI-Focused MOU

January 18, 2018

The rich history of collaboration between UC San Diego and AIST in Japan is getting richer. The organizations entered into a five-year memorandum of understanding on January 10. The MOU represents the continuation of a 1 Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Tennessee), Satoshi Matsuoka (Tokyo Institute of Technology), Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown and Spectre security updates on the performance of popular H Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE and NREL Take Steps to Create a Sustainable, Energy-Efficient Data Center with an H2 Fuel Cell

As enterprises attempt to manage rising volumes of data, unplanned data center outages are becoming more common and more expensive. As the cost of downtime rises, enterprises lose out on productivity and valuable competitive advantage without access to their critical data. Read more…

Fostering Lustre Advancement Through Development and Contributions

January 17, 2018

Six months after organizational changes at Intel's High Performance Data (HPDD) division, most in the Lustre community have shed any initial apprehension around the potential changes that could affect or disrupt Lustre Read more…

By Carlos Aoki Thomaz

UCSD, AIST Forge Tighter Alliance with AI-Focused MOU

January 18, 2018

The rich history of collaboration between UC San Diego and AIST in Japan is getting richer. The organizations entered into a five-year memorandum of understandi Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Fostering Lustre Advancement Through Development and Contributions

January 17, 2018

Six months after organizational changes at Intel's High Performance Data (HPDD) division, most in the Lustre community have shed any initial apprehension aroun Read more…

By Carlos Aoki Thomaz

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

ANL’s Rick Stevens on CANDLE, ARM, Quantum, and More

January 8, 2018

Late last year HPCwire caught up with Rick Stevens, associate laboratory director for computing, environment and life Sciences at Argonne National Laboratory, f Read more…

By John Russell

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This