LLNL Seeks Big Data System Balance with Catalyst

By Nicole Hemsoth

November 4, 2013

This morning Lawrence Livermore National Lab (LLNL) announced a new, purpose-built system designed to tackle specific data-intensive problems using some unique approaches to addressing I/O issues for key “big data” applications in bioinformatics and beyond.

The new Cray CS300 324-node system, dubbed Catalyst, will be bestowed with its inaugural applications sometime in December. Delivered in October, the 150 teraflop cluster sports some notable specs, which LLNL and Intel have commented on in detail below.

324 total nodes (128 GB DRAM)
150 TFlops
304 compute nodes (128 GB DRAM and 800GB NVRAM per node)
12 Lustre router nodes (128 GB DRAM and 3,200GB NVRAM per node)
2 Login nodes (128 GB DRAM) – 2 Management nodes (128 GB DRAM)
Processors – Intel Xeon processor E5-2695v2 (12 cores, 2.4Ghz)
NVRAM – Intel SSD 910 Series (800GB, 1/2 Height PCIe 2.0, 25nm, MLC)
Fabrics – Intel TrueScale Fabric (QDR-80)
Storage Software – Intel Lustre, Livermore’s DIMMAP (Data Intensive MMAP) and SCR (Scalable Checkpoint Restart)
One thing that might pop out immediately about these configuration details is that some unique choices have been made in the name of enhancing I/O and overall system balance. The 12-core processor choice, the use of QDR-80, and NVRAM all point to some serious thought about balancing architecture to the requirements of emerging classes of “big data” applications.

As one might imagine scanning the specs list, the spend here is not insignificant, but for a lab that’s focused on HPC, the real thrust of the investment is in the interconnect and I/O tooling versus sheer processing horsepower.

According to Matt Leininger, Deputy of Advanced Technology Projects at Lawrence Livermore National Lab, the combination of non-volatile memory, the latest Intel processors and special focus on the interconnect create the perfect storm for certain data-intensive applications, including those in bioinformatics, as well as for graph analytics and analyzing HPC simulation data.

One of the keys to the system’s data-intensive focus is the choice to use NVRAM in a novel way using some custom-developed technology. LLNL has a number of smaller flash-based clusters that they’ve been tweaking in terms of application middleware or at the OS level so that they can take advantage of NVRAM. During their exploration, they started looking at possible alternatives to the standard MMAP to allow applications to access the NVRAM as if it was actual DRAM memory. The result is their own Data-Intensive MMAP (DIMMAP) which handles the intelligence of the caching process and outshines Linux MMAP.

Leininger pointed to a bioinformatics application that had scaling problems. It now uses their DIMMAP technology on the backend to load large databases into NVRAM, enabling a new set of analytical options that weren’t possible before (or required reads and writes from disk, which killed performance). They have already been able to demo the success of DIMMAP on a smaller research cluster and the team is looking forward to taking advantage of Catalayst.

Mark Seager, CTO of Technical Computing at Intel, these choices push the relatively small Catalyst into 60 million IOPS territory. As he explained, “These devices are in the range of 150-200k IOPS per device and Catalyst has one on every node, so there’s 300 of them on compute nodes—and three on the buffer nodes. The bandwidth in aggregate out of these flash devices is comparable to what’s on the Sequoia system. They have a half terabyte per second of IO bandwidth out of Sequoia to a Luster parallel file system and we’ll have a half terabyte per second at these IOPS rates to these local flash drives on catalyst at a fraction of the cost. That’s a game changer.”

The other “game changer” for Livermore is hopping the single-rail barrier. As Leiniger noted, LLNL has been a TrueScale QDR shop for several years, but this system marks a new phase in that usage with their shift into dual-rail. With a typical cluster, if there’s one HAD it’s directly connected to one socket and while network performance off that one is great, when you communicate to the other, the extra hops sling a performance hit. As Leininger said, “dual rail offers more balanced performance and we expect that the dual rail QDR will be as good or better than any other technology on the market.”

According to Seager, “Even though EDR is faster in terms of the transmission rate per channel, the fact that we have two QDR channels in aggregate means there’s a lot more bandwidth coming off the node than with EDR. Since the TrueScale fabric does most the processing in software o the cores, as you go with a highly parallel processor, it’s possible to scale much better with one MPI task per core.”

Seager continued pointing out that even though while not all the bandwidth is available per channel, this is not really the issue because it’s not really used that way. “You never use it with one MPI task or one processor trying to use the whole channel. Typically, all of the MPI tasks on the node are all trying to use the interface and it’s really that aggregate throughput.”

Leininger said that this is an ideal configuration as they have several PCIe flash cards on the gateway nodes, which are separated and attached to PCIe directly. This means it’s possible to directly from the adapter to the processor without having to transfer across QPI. “It’s well balanced in terms of bandwidth of PCIe flash and the QDR interconnect,” he concluded.

One of the reasons why Intel is interested in this configuration is that they’re looking at how the usage of the system will evolve around LLNL’s emerging data intensive computing model. As Seager said, “there are specific apps that have been targeted but we’re also looking at how, once people start looking at this architecture differently, they’ll come up with new use models to help us learn what the next generation of applications will look like.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SC Bids Farewell to Denver, Heads to Dallas for 30th

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visitors to the Colorado Convention Center in Denver for the larg Read more…

By Tiffany Trader

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

How Cities Use HPC at the Edge to Get Smarter

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some cases, city managers didn’t even know existed. Speaking Read more…

By Doug Black

HPE Extreme Performance Solutions

Harness Scalable Petabyte Storage with HPE Apollo 4510 and HPE StoreEver

As a growing number of connected devices challenges IT departments to rapidly collect, manage, and store troves of data, organizations must adopt a new generation of IT to help them operate quickly and intelligently. Read more…

SC17 Student Cluster Competition Configurations: Fewer Nodes, Way More Accelerators

November 16, 2017

The final configurations for each of the SC17 “Donnybrook in Denver” Student Cluster Competition have been released. Fortunately, each team received their equipment shipments on time and undamaged, so the teams are r Read more…

By Dan Olds

SC Bids Farewell to Denver, Heads to Dallas for 30th

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visit Read more…

By Tiffany Trader

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

How Cities Use HPC at the Edge to Get Smarter

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some Read more…

By Doug Black

Student Cluster LINPACK Record Shattered! More LINs Packed Than Ever before!

November 16, 2017

Nanyang Technological University, the pride of Singapore, utterly destroyed the Student Cluster Competition LINPACK record by posting a score of 51.77 TFlop/s a Read more…

By Dan Olds

Hyperion Market Update: ‘Decent’ Growth Led by HPE; AI Transparency a Risk Issue

November 15, 2017

The HPC market update from Hyperion Research (formerly IDC) at the annual SC conference is a business and social “must,” and this year’s presentation at S Read more…

By Doug Black

Nvidia Focuses Its Cloud Containers on HPC Applications

November 14, 2017

Having migrated its top-of-the-line datacenter GPU to the largest cloud vendors, Nvidia is touting its Volta architecture for a range of scientific computing ta Read more…

By George Leopold

HPE Launches ARM-based Apollo System for HPC, AI

November 14, 2017

HPE doubled down on its memory-driven computing vision while expanding its processor portfolio with the announcement yesterday of the company’s first ARM-base Read more…

By Doug Black

OpenACC Shines in Global Climate/Weather Codes

November 14, 2017

OpenACC, the directive-based parallel programming model used mostly for porting codes to GPUs for use on heterogeneous systems, came to SC17 touting impressive Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This