LLNL Seeks Big Data System Balance with Catalyst

By Nicole Hemsoth

November 4, 2013

This morning Lawrence Livermore National Lab (LLNL) announced a new, purpose-built system designed to tackle specific data-intensive problems using some unique approaches to addressing I/O issues for key “big data” applications in bioinformatics and beyond.

The new Cray CS300 324-node system, dubbed Catalyst, will be bestowed with its inaugural applications sometime in December. Delivered in October, the 150 teraflop cluster sports some notable specs, which LLNL and Intel have commented on in detail below.

324 total nodes (128 GB DRAM)
150 TFlops
304 compute nodes (128 GB DRAM and 800GB NVRAM per node)
12 Lustre router nodes (128 GB DRAM and 3,200GB NVRAM per node)
2 Login nodes (128 GB DRAM) – 2 Management nodes (128 GB DRAM)
Processors – Intel Xeon processor E5-2695v2 (12 cores, 2.4Ghz)
NVRAM – Intel SSD 910 Series (800GB, 1/2 Height PCIe 2.0, 25nm, MLC)
Fabrics – Intel TrueScale Fabric (QDR-80)
Storage Software – Intel Lustre, Livermore’s DIMMAP (Data Intensive MMAP) and SCR (Scalable Checkpoint Restart)
One thing that might pop out immediately about these configuration details is that some unique choices have been made in the name of enhancing I/O and overall system balance. The 12-core processor choice, the use of QDR-80, and NVRAM all point to some serious thought about balancing architecture to the requirements of emerging classes of “big data” applications.

As one might imagine scanning the specs list, the spend here is not insignificant, but for a lab that’s focused on HPC, the real thrust of the investment is in the interconnect and I/O tooling versus sheer processing horsepower.

According to Matt Leininger, Deputy of Advanced Technology Projects at Lawrence Livermore National Lab, the combination of non-volatile memory, the latest Intel processors and special focus on the interconnect create the perfect storm for certain data-intensive applications, including those in bioinformatics, as well as for graph analytics and analyzing HPC simulation data.

One of the keys to the system’s data-intensive focus is the choice to use NVRAM in a novel way using some custom-developed technology. LLNL has a number of smaller flash-based clusters that they’ve been tweaking in terms of application middleware or at the OS level so that they can take advantage of NVRAM. During their exploration, they started looking at possible alternatives to the standard MMAP to allow applications to access the NVRAM as if it was actual DRAM memory. The result is their own Data-Intensive MMAP (DIMMAP) which handles the intelligence of the caching process and outshines Linux MMAP.

Leininger pointed to a bioinformatics application that had scaling problems. It now uses their DIMMAP technology on the backend to load large databases into NVRAM, enabling a new set of analytical options that weren’t possible before (or required reads and writes from disk, which killed performance). They have already been able to demo the success of DIMMAP on a smaller research cluster and the team is looking forward to taking advantage of Catalayst.

Mark Seager, CTO of Technical Computing at Intel, these choices push the relatively small Catalyst into 60 million IOPS territory. As he explained, “These devices are in the range of 150-200k IOPS per device and Catalyst has one on every node, so there’s 300 of them on compute nodes—and three on the buffer nodes. The bandwidth in aggregate out of these flash devices is comparable to what’s on the Sequoia system. They have a half terabyte per second of IO bandwidth out of Sequoia to a Luster parallel file system and we’ll have a half terabyte per second at these IOPS rates to these local flash drives on catalyst at a fraction of the cost. That’s a game changer.”

The other “game changer” for Livermore is hopping the single-rail barrier. As Leiniger noted, LLNL has been a TrueScale QDR shop for several years, but this system marks a new phase in that usage with their shift into dual-rail. With a typical cluster, if there’s one HAD it’s directly connected to one socket and while network performance off that one is great, when you communicate to the other, the extra hops sling a performance hit. As Leininger said, “dual rail offers more balanced performance and we expect that the dual rail QDR will be as good or better than any other technology on the market.”

According to Seager, “Even though EDR is faster in terms of the transmission rate per channel, the fact that we have two QDR channels in aggregate means there’s a lot more bandwidth coming off the node than with EDR. Since the TrueScale fabric does most the processing in software o the cores, as you go with a highly parallel processor, it’s possible to scale much better with one MPI task per core.”

Seager continued pointing out that even though while not all the bandwidth is available per channel, this is not really the issue because it’s not really used that way. “You never use it with one MPI task or one processor trying to use the whole channel. Typically, all of the MPI tasks on the node are all trying to use the interface and it’s really that aggregate throughput.”

Leininger said that this is an ideal configuration as they have several PCIe flash cards on the gateway nodes, which are separated and attached to PCIe directly. This means it’s possible to directly from the adapter to the processor without having to transfer across QPI. “It’s well balanced in terms of bandwidth of PCIe flash and the QDR interconnect,” he concluded.

One of the reasons why Intel is interested in this configuration is that they’re looking at how the usage of the system will evolve around LLNL’s emerging data intensive computing model. As Seager said, “there are specific apps that have been targeted but we’re also looking at how, once people start looking at this architecture differently, they’ll come up with new use models to help us learn what the next generation of applications will look like.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in 2017 with scale-up production for enterprise datacenters and Read more…

By Tiffany Trader

Fine-Tuning Severe Hail Forecasting with Machine Learning

July 20, 2017

Depending on whether you’ve been caught outside during a severe hail storm, the sight of greenish tinted clouds on the horizon may cause serious knots in the pit of your stomach, or at least give you pause. There’s g Read more…

By Sean Thielen

Trinity Supercomputer’s Haswell and KNL Partitions Are Merged

July 19, 2017

Trinity supercomputer’s two partitions – one based on Intel Xeon Haswell processors and the other on Xeon Phi Knights Landing – have been fully integrated are now available for use on classified work in the Nationa Read more…

By HPCwire Staff

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's output. The Japanese multinational has made a raft of HPC and A Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Servers Deliver High Performance Remote Visualization

Whether generating seismic simulations, locating new productive oil reservoirs, or constructing complex models of the earth’s subsurface, energy, oil, and gas (EO&G) is a highly data-driven industry. Read more…

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the computer we use most (hopefully) and understand least. This mon Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee of the House of Representatives voted to accept the recomme Read more…

By Alex R. Larzelere

Summer Reading: IEEE Spectrum’s Chip Hall of Fame

July 17, 2017

Take a trip down memory lane – the Mostek MK4096 4-kilobit DRAM, for instance. Perhaps processors are more to your liking. Remember the Sh-Boom processor (1988), created by Russell Fish and Chuck Moore, and named after Read more…

By John Russell

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provides participants the opportunity to network with industry lea Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Fine-Tuning Severe Hail Forecasting with Machine Learning

July 20, 2017

Depending on whether you’ve been caught outside during a severe hail storm, the sight of greenish tinted clouds on the horizon may cause serious knots in the Read more…

By Sean Thielen

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's out Read more…

By Tiffany Trader

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the com Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee Read more…

By Alex R. Larzelere

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provid Read more…

By Tiffany Trader

Satellite Advances, NSF Computation Power Rapid Mapping of Earth’s Surface

July 13, 2017

New satellite technologies have completely changed the game in mapping and geographical data gathering, reducing costs and placing a new emphasis on time series Read more…

By Ken Chiacchia and Tiffany Jolley

Intel Skylake: Xeon Goes from Chip to Platform

July 13, 2017

With yesterday’s New York unveiling of the new “Skylake” Xeon Scalable processors, Intel made multiple runs at multiple competitive threats and strategic Read more…

By Doug Black

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This