HPC Clouds and the Energy-Performance Tradeoff

By Tiffany Trader

November 7, 2013

Public cloud platforms have become popular as a means of accessing powerful computing resources without having to make large capital investments.

While cloud computing is not a good fit for all HPC workloads, the lower barrier to entry has had a democratizing effect for some HPC users. Last month, IDC revealed that the percentage of sites using cloud computing to process HPC workloads rose from 13.8 percent in 2011 to 23.5 percent in 2013, with public and private cloud use about equally represented among the 2013 sites.

While some in the HPC community dismissed the suitability of the “cloud” for HPC workloads early on, the grid/cloud/virtualization space has long enjoyed an active research base, a trend that continues to this day. One recent paper addressing this topic from a green angle comes from trio of computer scientists based out of Ho Chi Minh City University of Technology in Vietnam. Their work on the energy efficient allocation of virtual machines in a high performance computing cloud was published this month in the Journal of Science and Technology, Vietnamese Academy of Science and Technology.

While some HPC clouds employ bare metal servers, this study is concerned with the more common type of cloud platform, which uses virtualization technology to provision computational resources in the form of virtual machines (VMs). For cloud datacenters, energy consumption is very often the number one cost center, thus cloud operators are highly motivated to rein in energy use. One way to do this is by deploying energy-efficient management techniques.

These techniques are not without challenges, however. For example, in order to realize an energy efficient resource allocation for virtual machines in an HPC cloud, there is a tradeoff between minimizing the energy consumption of physical machines and satisfying quality of service (e.g., performance or resource availability). Cloud providers can maximize their profit by reducing the power cost by operating the smallest number of physical servers. But, pulling the equation in the opposite direction are cloud customers, who desire the highest performance for their applications.

The situation is further challenged by HPC applications. Resource requirements are application-dependent, but as HPC workloads are mostly CPU-intensive, they are unsuitable for some energy management techniques, such as dynamic consolidation and migration.

In this paper, the researchers propose new VM allocation heuristics that use a metric of performance-per-watt to select the most energy-efficient physical machine for each virtual machine. Their energy-aware schedule algorithm was inspired by the Green500 list’s idea of using a metric (performance-per-watt) to rank energy efficiency. They ask the question: “How can we use a similar metric (e.g. TotalMIPS/Watt) as a criterion for selecting a host on assignment of a new VM and is total energy consumption of the whole system minimum?”

Their technique is called Energy-aware and Performance-per-watt oriented Best-fit (EPOBF). The study compares EPOBF (version 1 and 2) to state-of-the-art heuristics (called PABFD and VBP Greedy) on heterogeneous physical machines, where each machine has a multicore CPU.

The authors selected the most recent version (version 3.0) of CloudSim to model and simulate their HPC cloud and the VM allocation heuristics. Their simulated cloud datacenter has 5,000 heterogeneous PMs and a simulated workload with 29,624 cloudlets, each of which can model an HPC task.

The physical machines break down into one-third HP ProLiant ML110 G5 machines; one-third IBM x3250 machines, and one-third Dell PowerEdge R620 machines. The researchers assume that power consumption of a PM has a linear relationship to CPU utilization.

Energy consumption of the different VM allocation heuristics:

VM_allocation_heuristic_table_2_energy_consumption_465x

In the setup used for this study, the scheduler does not have access to global information about user jobs and user applications in the future. Users request short-term resources at fixed start times and non-interrupted durations.

The authors conclude that it is possible for the HPC cloud’s scheduler to use the metric of performance-per-watt to allocate VMs to hosts for improved energy-efficiency. The experimental simulations show that the EPOBF heuristics can reduce total energy consumption by 35 percent on average in comparison to the PABFD and VBP Greedy allocation heuristics.

The next step for these computer scientists is to evaluate the performance of EPOBF heuristics on different types of system models and workloads. They also plan to explore the impact of memory in energy models and to develop an accurate power model for multicore PMs.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Google Gets First Dibs on New Skylake Chips

February 27, 2017

As part of an ongoing effort to differentiate its public cloud services, Google made good this week on its intention to bring custom Xeon Skylake chips from Intel Corp. Read more…

By George Leopold

Thomas Sterling on CREST and Academia’s Role in HPC Research

February 27, 2017

The US advances in high performance computing over many decades have been a product of the combined engagement of research centers in industry, government labs, and academia. Read more…

By Thomas Sterling, Indiana University

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

Weekly Twitter Roundup (Feb. 23, 2017)

February 23, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPE Extreme Performance Solutions

Manufacturers Reaping the Benefits of Remote Visualization

Today’s manufacturers are operating in an ever-changing atmosphere, and finding new ways to boost productivity has never been more vital.

This is why manufacturers are ramping up their investments in high performance computing (HPC), a trend which has helped give rise to the “connected factory” and Industrial Internet of Things (IIoT) concepts that are proliferating throughout the industry today. Read more…

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

HPC Financial Update (Feb. 2017)

February 22, 2017

In this recurring feature, we’ll provide you with financial highlights from companies in the HPC industry. Check back in regularly for an updated list with the most pertinent fiscal information. Read more…

By Thomas Ayres

Rethinking HPC Platforms for ‘Second Gen’ Applications

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. Read more…

By John Russell

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

Thomas Sterling on CREST and Academia’s Role in HPC Research

February 27, 2017

The US advances in high performance computing over many decades have been a product of the combined engagement of research centers in industry, government labs, and academia. Read more…

By Thomas Sterling, Indiana University

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Leading Solution Providers

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

  • arrow
  • Click Here for More Headlines
  • arrow
Share This