HPC Clouds and the Energy-Performance Tradeoff

By Tiffany Trader

November 7, 2013

Public cloud platforms have become popular as a means of accessing powerful computing resources without having to make large capital investments.

While cloud computing is not a good fit for all HPC workloads, the lower barrier to entry has had a democratizing effect for some HPC users. Last month, IDC revealed that the percentage of sites using cloud computing to process HPC workloads rose from 13.8 percent in 2011 to 23.5 percent in 2013, with public and private cloud use about equally represented among the 2013 sites.

While some in the HPC community dismissed the suitability of the “cloud” for HPC workloads early on, the grid/cloud/virtualization space has long enjoyed an active research base, a trend that continues to this day. One recent paper addressing this topic from a green angle comes from trio of computer scientists based out of Ho Chi Minh City University of Technology in Vietnam. Their work on the energy efficient allocation of virtual machines in a high performance computing cloud was published this month in the Journal of Science and Technology, Vietnamese Academy of Science and Technology.

While some HPC clouds employ bare metal servers, this study is concerned with the more common type of cloud platform, which uses virtualization technology to provision computational resources in the form of virtual machines (VMs). For cloud datacenters, energy consumption is very often the number one cost center, thus cloud operators are highly motivated to rein in energy use. One way to do this is by deploying energy-efficient management techniques.

These techniques are not without challenges, however. For example, in order to realize an energy efficient resource allocation for virtual machines in an HPC cloud, there is a tradeoff between minimizing the energy consumption of physical machines and satisfying quality of service (e.g., performance or resource availability). Cloud providers can maximize their profit by reducing the power cost by operating the smallest number of physical servers. But, pulling the equation in the opposite direction are cloud customers, who desire the highest performance for their applications.

The situation is further challenged by HPC applications. Resource requirements are application-dependent, but as HPC workloads are mostly CPU-intensive, they are unsuitable for some energy management techniques, such as dynamic consolidation and migration.

In this paper, the researchers propose new VM allocation heuristics that use a metric of performance-per-watt to select the most energy-efficient physical machine for each virtual machine. Their energy-aware schedule algorithm was inspired by the Green500 list’s idea of using a metric (performance-per-watt) to rank energy efficiency. They ask the question: “How can we use a similar metric (e.g. TotalMIPS/Watt) as a criterion for selecting a host on assignment of a new VM and is total energy consumption of the whole system minimum?”

Their technique is called Energy-aware and Performance-per-watt oriented Best-fit (EPOBF). The study compares EPOBF (version 1 and 2) to state-of-the-art heuristics (called PABFD and VBP Greedy) on heterogeneous physical machines, where each machine has a multicore CPU.

The authors selected the most recent version (version 3.0) of CloudSim to model and simulate their HPC cloud and the VM allocation heuristics. Their simulated cloud datacenter has 5,000 heterogeneous PMs and a simulated workload with 29,624 cloudlets, each of which can model an HPC task.

The physical machines break down into one-third HP ProLiant ML110 G5 machines; one-third IBM x3250 machines, and one-third Dell PowerEdge R620 machines. The researchers assume that power consumption of a PM has a linear relationship to CPU utilization.

Energy consumption of the different VM allocation heuristics:

VM_allocation_heuristic_table_2_energy_consumption_465x

In the setup used for this study, the scheduler does not have access to global information about user jobs and user applications in the future. Users request short-term resources at fixed start times and non-interrupted durations.

The authors conclude that it is possible for the HPC cloud’s scheduler to use the metric of performance-per-watt to allocate VMs to hosts for improved energy-efficiency. The experimental simulations show that the EPOBF heuristics can reduce total energy consumption by 35 percent on average in comparison to the PABFD and VBP Greedy allocation heuristics.

The next step for these computer scientists is to evaluate the performance of EPOBF heuristics on different types of system models and workloads. They also plan to explore the impact of memory in energy models and to develop an accurate power model for multicore PMs.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

UCSD Web-based Tool Tracking CA Wildfires Generates 1.5M Views

October 16, 2017

Tracking the wildfires raging in northern CA is an unpleasant but necessary part of guiding efforts to fight the fires and safely evacuate affected residents. One such tool – Firemap – is a web-based tool developed b Read more…

By John Russell

Exascale Imperative: New Movie from HPE Makes a Compelling Case

October 13, 2017

Why is pursuing exascale computing so important? In a new video – Hewlett Packard Enterprise: Eighteen Zeros – four HPE executives, a prominent national lab HPC researcher, and HPCwire managing editor Tiffany Trader Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

OLCF’s 200 Petaflops Summit Machine Still Slated for 2018 Start-up

October 3, 2017

The Department of Energy’s planned 200 petaflops Summit computer, which is currently being installed at Oak Ridge Leadership Computing Facility, is on track t Read more…

By John Russell

US Exascale Program – Some Additional Clarity

September 28, 2017

The last time we left the Department of Energy’s exascale computing program in July, things were looking very positive. Both the U.S. House and Senate had pas Read more…

By Alex R. Larzelere

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Leading Solution Providers

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Cente Read more…

By Linda Barney

  • arrow
  • Click Here for More Headlines
  • arrow
Share This