HPC Prospects in Qatar

By Gary Johnson

November 11, 2013

All countries have some computing capability, but relatively fewer are serious players in HPC.  So far in the Middle East, the only country to place machines on the Top500 list is Saudi Arabia.  Qatar, which is right next door, is a very wealthy and focused country that could easily become a significant HPC power.  Why would Qatar want to play in HPC and how significant a player might it become? 

As evidenced by the 1980 to 2013 comparison photos of Doha, Qatar’s capital city, oil and gas revenues have enabled Qatar to transform itself from a poor British protectorate noted mainly for pearling, into the country with the world’s highest per capita income.

Estimates project that Qatar’s 2012 Gross Domestic Product (GDP) stand at $191 billion and its per capita GDP at $103,900.  About 36% of its households are in the highest 10% share of its income distribution. Qatar’s 2012 population was about 1.8 million and its labor force about 1.4 million.  Of the total population, only about 300,000 are Qatari citizens.  To enable its rapid economic development, Qatar has supplemented its domestic work force with a large compliment of expatriate workers from around the globe – and at all levels, from construction laborers to researchers, academics and administrators.

Talent Acquisition

Thomas Zacharia
Thomas Zacharia

Among the many expats now working in Qatar, two are particularly relevant to HPC – Thomas Zacharia and Mohammad (Moe) Khaleel.  About a year ago, after a 25 year career at Oak Ridge National Laboratory, Thomas Zacharia left the Lab to become the Qatar Foundation’s (QF) Executive Vice President of Research and Development.  Formerly ORNL’s Deputy Director for Science and Technology, Dr. Zacharia was best known for bringing Leadership Computing to the Lab, establishing the National Center for Computational Sciences and placing ORNL’s Jaguar supercomputer at the top of the Top500 list.

About six months ago, after a 20+ year career at Pacific Northwest National Laboratory, Moe Khaleel left his Lab to become QF R&D’s Executive Director for the Qatar Energy and Environment Research Institute (QEERI) and acting Executive Director for Qatar’s National Center for Computing Research Infrastructure (NCRI).

While at PNNL, Dr. Khaleel led the Lab’s Computational Sciences and Mathematics Division and co-directed the Northwest Institute for Advanced Computing at the University of Washington.  Under his leadership, PNNL gained a strong national reputation in HPC, computational sciences and exascale computing research.

Mohammad (Moe) Khaleel
Mohammad (Moe) Khaleel

Given the extensive professional experience of Drs. Zacharia and Khaleel in pushing the HPC envelope and in computational science applications R&D, it seems reasonable to expect that the Qatar Foundation’s Research and Development program intends to focus some of its resources on these areas.  This expectation is reinforced by the recent announcement of a search for a permanent Executive Director for NCRI.

Qatar R&D Priorities

As stated in the Qatar National Vision 2030 document:

Qatar is at a crossroads. The country’s abundant wealth creates both previously undreamt of opportunities and formidable challenges. It is now imperative for Qatar to choose the best development path that is compatible with the views of its leadership and the aspirations of its people.

The vision statement for the Qatar National Research Strategy is:

Qatar will be a leading center for research and development excellence and innovation.

In implementing its national research strategy, Qatar has chosen a number of cross-cutting research priorities.  Among these, at least four are noteworthy from an HPC perspective:

  • Energy Security;
  • Water Security;
  • Cyber Security; and
  • Biomedical Research.

While Qatar has abundant oil and gas supplies, its focus is on transitioning its own energy economy to renewable sources, principally solar.  Qatar depends on desalinating seawater to provide fresh water to meet virtually all of its domestic needs.  Thus, new water purification technologies that provide higher throughput at lower energy costs are critically important.  Qatar is one of the most connected countries in the world. Culturally, economically, politically, socially, scientifically and financially the nation has risen to global prominence because of an infrastructure and communications network that is highly automated.  With this reliance on computing and networking technologies, Qatar has become one of the world’s most visible targets for cyber security attacks.  So, cyber security is also a high priority.  Biomedical research in Qatar is concentrated on genomic medicine, biomedical engineering, stem cell and gene-based therapies with primary focus in diabetes, cancer, and neurological diseases.  Additionally, the Qatar foundation’s healthcare initiative involves the Sidra Medical and Research Center – an ultramodern, all-digital academic medical center which intends to set new standards in patient care.

Since much of Qatar’s infrastructure is quite new and since Doha is growing rapidly, one can think of it as a venue for the development of a smart city.  That makes Doha an interesting place for Urban Studies – and provides an additional data-intensive computing research area to the mix.  Dr. Zacharia elaborated on this theme during a panel discussion at the International Supercomputing Conference’s Think Tank on Big Data this past Summer.

Based on our understanding of efforts elsewhere to deal with similar challenges, it seems safe to say that any serious attack on these problems will require very significant computing capabilities.

HPC Budget Estimate

So, Qatar has the national financial resources, core leadership and R&D priorities to justify becoming a significant player in global HPC.  How significant could Qatar become – and what would it cost?

If we assume that the Qatar Foundation’s R&D enterprise is about the same size as the US Department of Energy’s (DOE) Office of Science, that would size it at about $5 billion per annum.  The Office of Science spends roughly $210 million per year, or 4% of its budget, to support its three large computing activities.  This collection consists of a production facility, NERSC, at about $65 million/year and two “leadership” facilities, the Argonne facility (ALCF) at about $60 million/year and the Oak Ridge facility (OLCF) at about $85 million/year.  The OLCF currently houses Titan, the number 2 machine on the Top500 list.

The numbers above represent recurring costs.  If we look at acquisition costs, then consider Tianhe-2 which is currently at the top of the Top500 list – and is roughly twice as fast as Titan.  Reportedly, the acquisition of Tihane-2 cost $390 million.

Another way to bound the budget for a high-end machine would be to look at its development cost.  At a US House of Representatives hearing earlier this year, Dr. Rick Stevens from DOE’s Argonne National Laboratory reported that the investment required for DOE to field an exascale system by 2020 would be about $400 million/year (you’ll find the relevant discussion about 62 minutes into this YouTube video of the hearing).

So, given all of this, we can make a few rough estimates.  If QF R&D were to field a Titan sized machine, perhaps it would cost about $80 million/year, or about 1.6% of an assumed $5 billion budget.  Suppose twice as fast (i.e. Tihane-2 sized) cost twice as much.  That would yield 3.2% or $160 million/year.

Developing an exascale system is a totally different matter.  But suppose there is some room for savings in the $400 million/year estimate.  Maybe $300 million/year would suffice.  These scenarios would cost 8% or 6% of an assumed $5 billion budget.  Also, since developing a next-generation machine would not satisfy current or immediate future requirements, one would need to include an additional 1.6% to 3.2% to cover those needs.

In summary, if Qatar were to require a nice production supercomputing facility, one could be operated for about $60 million/year.  Going beyond that could range as high as $400 – $500 million/year.

Commitment

We’ve been discussing some pretty large budget numbers for any country – and Qatar is a small (but prosperous) one.  Given the computing needs of its research priorities, might Qatar commit to being a major HPC player?

In a recent article, Dr. Zacharia summarized his view of Qatar’s R&D goals as being “ambitious” but “achievable” and went on to say:

What’s taking place in Qatar is unprecedented in recent times. In many ways it harkens back to the time when the big national laboratories were established in the United States during the establishment of NASA. We have the opportunity and responsibility to build this knowledge-based economy.

The article also presents some summary expectations for the next five years, over which QF R&D intends to support:

  • A new 200,000 square meter R&D complex;
  • 2,000 new researchers at QF R&D;
  • 8,000 private sector researchers; and
  • 1,000 Ph.D. graduates.

Globally, R&D and supercomputing expenditures as a percent of GDP vary widely.  Based on statistics drawn from the World Bank, the CIA World Factbook and an IDC study done for the European Commission, we can make a few relevant comparisons:

Country/Region

R&D Expenditure

[% of GDP]

Supercomputing Expenditure

[% of GDP]

United States

2.9%

0.0089%

European Union

1.8%

0.0049%

Japan

3.4%

0.0055%

China

1.7%

0.0014%

Korea

3.7%

0.0083%

Singapore

2.4%

0.0100%

Qatar

2.8%

?

 

The 2.8% of GDP number cited for Qatar comes from a Knoxville News Sentinel article written in August of 2012.  If correct, it would place Qatar in the same R&D expenditure range as the US or Singapore, well above the EU or China, but lower than Japan or Korea.  If Qatar were to spend 0.01% of GDP on supercomputing (i.e. in the range of the US or Singapore), this would provide roughly $20 million/year.  That would be enough to be a very credible HPC player.  To move into the top ranks, Qatar would probably need to spend about 0.030% to 0.045% of GDP.

Could Qatar make a big commitment to HPC?  So far, they’ve turned a poor economy based on pearling and fishing into one yielding the world’s highest per capita income.  The Qatari satellite TV station Al-Jazeera has become one of the most important broadcasters, not only in the Arab world, but globally.  Qatar is quite active on the regional and world stage, having mediated in disputes in the Middle East and Africa.  Qatar also won the bid to host the 2022 World Cup – the world’s largest sporting event.  Qatar is rapidly developing Doha and expanding its infrastructure.  In fact, Qatar is expected to spend about $100 billion on infrastructure development in Doha over the next 10 years.  Large numbers of buildings are under construction, there is a huge expansion to its transportation network, including the addition of new highways, the construction of a new airport, and the construction of a metro system.  For a visual impression of what the Qataris are doing, take a look at these videos: Doha Bay Crossing and Lusail Expressway.

Most importantly, rather than focusing on tourism, as some other Middle Eastern countries have, Qatar has chosen to focus its resources on developing a knowledge economy.  HPC will need to be an integral part of any such economy.

Qatar has become known for “punching above its weight”.  Time will tell if it chooses to punch above its weight in HPC.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

TACC Helps ROSIE Bioscience Gateway Expand its Impact

April 26, 2017

Biomolecule structure prediction has long been challenging not least because the relevant software and workflows often require high-end HPC systems that many bioscience researchers lack easy access to. Read more…

By John Russell

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

IBM, Nvidia, Stone Ridge Claim Gas & Oil Simulation Record

April 25, 2017

IBM, Nvidia, and Stone Ridge Technology today reported setting the performance record for a “billion cell” oil and gas reservoir simulation. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Remote Visualization Optimizing Life Sciences Operations and Care Delivery

As patients continually demand a better quality of care and increasingly complex workloads challenge healthcare organizations to innovate, investing in the right technologies is key to ensuring growth and success. Read more…

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This