HPC Prospects in Qatar

By Gary Johnson

November 11, 2013

All countries have some computing capability, but relatively fewer are serious players in HPC.  So far in the Middle East, the only country to place machines on the Top500 list is Saudi Arabia.  Qatar, which is right next door, is a very wealthy and focused country that could easily become a significant HPC power.  Why would Qatar want to play in HPC and how significant a player might it become? 

As evidenced by the 1980 to 2013 comparison photos of Doha, Qatar’s capital city, oil and gas revenues have enabled Qatar to transform itself from a poor British protectorate noted mainly for pearling, into the country with the world’s highest per capita income.

Estimates project that Qatar’s 2012 Gross Domestic Product (GDP) stand at $191 billion and its per capita GDP at $103,900.  About 36% of its households are in the highest 10% share of its income distribution. Qatar’s 2012 population was about 1.8 million and its labor force about 1.4 million.  Of the total population, only about 300,000 are Qatari citizens.  To enable its rapid economic development, Qatar has supplemented its domestic work force with a large compliment of expatriate workers from around the globe – and at all levels, from construction laborers to researchers, academics and administrators.

Talent Acquisition

Thomas Zacharia
Thomas Zacharia

Among the many expats now working in Qatar, two are particularly relevant to HPC – Thomas Zacharia and Mohammad (Moe) Khaleel.  About a year ago, after a 25 year career at Oak Ridge National Laboratory, Thomas Zacharia left the Lab to become the Qatar Foundation’s (QF) Executive Vice President of Research and Development.  Formerly ORNL’s Deputy Director for Science and Technology, Dr. Zacharia was best known for bringing Leadership Computing to the Lab, establishing the National Center for Computational Sciences and placing ORNL’s Jaguar supercomputer at the top of the Top500 list.

About six months ago, after a 20+ year career at Pacific Northwest National Laboratory, Moe Khaleel left his Lab to become QF R&D’s Executive Director for the Qatar Energy and Environment Research Institute (QEERI) and acting Executive Director for Qatar’s National Center for Computing Research Infrastructure (NCRI).

While at PNNL, Dr. Khaleel led the Lab’s Computational Sciences and Mathematics Division and co-directed the Northwest Institute for Advanced Computing at the University of Washington.  Under his leadership, PNNL gained a strong national reputation in HPC, computational sciences and exascale computing research.

Mohammad (Moe) Khaleel
Mohammad (Moe) Khaleel

Given the extensive professional experience of Drs. Zacharia and Khaleel in pushing the HPC envelope and in computational science applications R&D, it seems reasonable to expect that the Qatar Foundation’s Research and Development program intends to focus some of its resources on these areas.  This expectation is reinforced by the recent announcement of a search for a permanent Executive Director for NCRI.

Qatar R&D Priorities

As stated in the Qatar National Vision 2030 document:

Qatar is at a crossroads. The country’s abundant wealth creates both previously undreamt of opportunities and formidable challenges. It is now imperative for Qatar to choose the best development path that is compatible with the views of its leadership and the aspirations of its people.

The vision statement for the Qatar National Research Strategy is:

Qatar will be a leading center for research and development excellence and innovation.

In implementing its national research strategy, Qatar has chosen a number of cross-cutting research priorities.  Among these, at least four are noteworthy from an HPC perspective:

  • Energy Security;
  • Water Security;
  • Cyber Security; and
  • Biomedical Research.

While Qatar has abundant oil and gas supplies, its focus is on transitioning its own energy economy to renewable sources, principally solar.  Qatar depends on desalinating seawater to provide fresh water to meet virtually all of its domestic needs.  Thus, new water purification technologies that provide higher throughput at lower energy costs are critically important.  Qatar is one of the most connected countries in the world. Culturally, economically, politically, socially, scientifically and financially the nation has risen to global prominence because of an infrastructure and communications network that is highly automated.  With this reliance on computing and networking technologies, Qatar has become one of the world’s most visible targets for cyber security attacks.  So, cyber security is also a high priority.  Biomedical research in Qatar is concentrated on genomic medicine, biomedical engineering, stem cell and gene-based therapies with primary focus in diabetes, cancer, and neurological diseases.  Additionally, the Qatar foundation’s healthcare initiative involves the Sidra Medical and Research Center – an ultramodern, all-digital academic medical center which intends to set new standards in patient care.

Since much of Qatar’s infrastructure is quite new and since Doha is growing rapidly, one can think of it as a venue for the development of a smart city.  That makes Doha an interesting place for Urban Studies – and provides an additional data-intensive computing research area to the mix.  Dr. Zacharia elaborated on this theme during a panel discussion at the International Supercomputing Conference’s Think Tank on Big Data this past Summer.

Based on our understanding of efforts elsewhere to deal with similar challenges, it seems safe to say that any serious attack on these problems will require very significant computing capabilities.

HPC Budget Estimate

So, Qatar has the national financial resources, core leadership and R&D priorities to justify becoming a significant player in global HPC.  How significant could Qatar become – and what would it cost?

If we assume that the Qatar Foundation’s R&D enterprise is about the same size as the US Department of Energy’s (DOE) Office of Science, that would size it at about $5 billion per annum.  The Office of Science spends roughly $210 million per year, or 4% of its budget, to support its three large computing activities.  This collection consists of a production facility, NERSC, at about $65 million/year and two “leadership” facilities, the Argonne facility (ALCF) at about $60 million/year and the Oak Ridge facility (OLCF) at about $85 million/year.  The OLCF currently houses Titan, the number 2 machine on the Top500 list.

The numbers above represent recurring costs.  If we look at acquisition costs, then consider Tianhe-2 which is currently at the top of the Top500 list – and is roughly twice as fast as Titan.  Reportedly, the acquisition of Tihane-2 cost $390 million.

Another way to bound the budget for a high-end machine would be to look at its development cost.  At a US House of Representatives hearing earlier this year, Dr. Rick Stevens from DOE’s Argonne National Laboratory reported that the investment required for DOE to field an exascale system by 2020 would be about $400 million/year (you’ll find the relevant discussion about 62 minutes into this YouTube video of the hearing).

So, given all of this, we can make a few rough estimates.  If QF R&D were to field a Titan sized machine, perhaps it would cost about $80 million/year, or about 1.6% of an assumed $5 billion budget.  Suppose twice as fast (i.e. Tihane-2 sized) cost twice as much.  That would yield 3.2% or $160 million/year.

Developing an exascale system is a totally different matter.  But suppose there is some room for savings in the $400 million/year estimate.  Maybe $300 million/year would suffice.  These scenarios would cost 8% or 6% of an assumed $5 billion budget.  Also, since developing a next-generation machine would not satisfy current or immediate future requirements, one would need to include an additional 1.6% to 3.2% to cover those needs.

In summary, if Qatar were to require a nice production supercomputing facility, one could be operated for about $60 million/year.  Going beyond that could range as high as $400 – $500 million/year.

Commitment

We’ve been discussing some pretty large budget numbers for any country – and Qatar is a small (but prosperous) one.  Given the computing needs of its research priorities, might Qatar commit to being a major HPC player?

In a recent article, Dr. Zacharia summarized his view of Qatar’s R&D goals as being “ambitious” but “achievable” and went on to say:

What’s taking place in Qatar is unprecedented in recent times. In many ways it harkens back to the time when the big national laboratories were established in the United States during the establishment of NASA. We have the opportunity and responsibility to build this knowledge-based economy.

The article also presents some summary expectations for the next five years, over which QF R&D intends to support:

  • A new 200,000 square meter R&D complex;
  • 2,000 new researchers at QF R&D;
  • 8,000 private sector researchers; and
  • 1,000 Ph.D. graduates.

Globally, R&D and supercomputing expenditures as a percent of GDP vary widely.  Based on statistics drawn from the World Bank, the CIA World Factbook and an IDC study done for the European Commission, we can make a few relevant comparisons:

Country/Region

R&D Expenditure

[% of GDP]

Supercomputing Expenditure

[% of GDP]

United States

2.9%

0.0089%

European Union

1.8%

0.0049%

Japan

3.4%

0.0055%

China

1.7%

0.0014%

Korea

3.7%

0.0083%

Singapore

2.4%

0.0100%

Qatar

2.8%

?

 

The 2.8% of GDP number cited for Qatar comes from a Knoxville News Sentinel article written in August of 2012.  If correct, it would place Qatar in the same R&D expenditure range as the US or Singapore, well above the EU or China, but lower than Japan or Korea.  If Qatar were to spend 0.01% of GDP on supercomputing (i.e. in the range of the US or Singapore), this would provide roughly $20 million/year.  That would be enough to be a very credible HPC player.  To move into the top ranks, Qatar would probably need to spend about 0.030% to 0.045% of GDP.

Could Qatar make a big commitment to HPC?  So far, they’ve turned a poor economy based on pearling and fishing into one yielding the world’s highest per capita income.  The Qatari satellite TV station Al-Jazeera has become one of the most important broadcasters, not only in the Arab world, but globally.  Qatar is quite active on the regional and world stage, having mediated in disputes in the Middle East and Africa.  Qatar also won the bid to host the 2022 World Cup – the world’s largest sporting event.  Qatar is rapidly developing Doha and expanding its infrastructure.  In fact, Qatar is expected to spend about $100 billion on infrastructure development in Doha over the next 10 years.  Large numbers of buildings are under construction, there is a huge expansion to its transportation network, including the addition of new highways, the construction of a new airport, and the construction of a metro system.  For a visual impression of what the Qataris are doing, take a look at these videos: Doha Bay Crossing and Lusail Expressway.

Most importantly, rather than focusing on tourism, as some other Middle Eastern countries have, Qatar has chosen to focus its resources on developing a knowledge economy.  HPC will need to be an integral part of any such economy.

Qatar has become known for “punching above its weight”.  Time will tell if it chooses to punch above its weight in HPC.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 8, 2016)

December 8, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Qualcomm Targets Intel Datacenter Dominance with 10nm ARM-based Server Chip

December 8, 2016

Claiming no less than a reshaping of the future of Intel-dominated datacenter computing, Qualcomm Technologies, the market leader in smartphone chips, announced the forthcoming availability of what it says is the world’s first 10nm processor for servers, based on ARM Holding’s chip designs. Read more…

By Doug Black

Which Schools Produce the Top Coders in the World?

December 8, 2016

Ever wonder which universities worldwide produce the best coders? The answers may surprise you, at least as judged by the results of a competition posted yesterday on the HackerRank blog. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

Leading Solution Providers

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This