HPC Prospects in Qatar

By Gary Johnson

November 11, 2013

All countries have some computing capability, but relatively fewer are serious players in HPC.  So far in the Middle East, the only country to place machines on the Top500 list is Saudi Arabia.  Qatar, which is right next door, is a very wealthy and focused country that could easily become a significant HPC power.  Why would Qatar want to play in HPC and how significant a player might it become? 

As evidenced by the 1980 to 2013 comparison photos of Doha, Qatar’s capital city, oil and gas revenues have enabled Qatar to transform itself from a poor British protectorate noted mainly for pearling, into the country with the world’s highest per capita income.

Estimates project that Qatar’s 2012 Gross Domestic Product (GDP) stand at $191 billion and its per capita GDP at $103,900.  About 36% of its households are in the highest 10% share of its income distribution. Qatar’s 2012 population was about 1.8 million and its labor force about 1.4 million.  Of the total population, only about 300,000 are Qatari citizens.  To enable its rapid economic development, Qatar has supplemented its domestic work force with a large compliment of expatriate workers from around the globe – and at all levels, from construction laborers to researchers, academics and administrators.

Talent Acquisition

Thomas Zacharia
Thomas Zacharia

Among the many expats now working in Qatar, two are particularly relevant to HPC – Thomas Zacharia and Mohammad (Moe) Khaleel.  About a year ago, after a 25 year career at Oak Ridge National Laboratory, Thomas Zacharia left the Lab to become the Qatar Foundation’s (QF) Executive Vice President of Research and Development.  Formerly ORNL’s Deputy Director for Science and Technology, Dr. Zacharia was best known for bringing Leadership Computing to the Lab, establishing the National Center for Computational Sciences and placing ORNL’s Jaguar supercomputer at the top of the Top500 list.

About six months ago, after a 20+ year career at Pacific Northwest National Laboratory, Moe Khaleel left his Lab to become QF R&D’s Executive Director for the Qatar Energy and Environment Research Institute (QEERI) and acting Executive Director for Qatar’s National Center for Computing Research Infrastructure (NCRI).

While at PNNL, Dr. Khaleel led the Lab’s Computational Sciences and Mathematics Division and co-directed the Northwest Institute for Advanced Computing at the University of Washington.  Under his leadership, PNNL gained a strong national reputation in HPC, computational sciences and exascale computing research.

Mohammad (Moe) Khaleel
Mohammad (Moe) Khaleel

Given the extensive professional experience of Drs. Zacharia and Khaleel in pushing the HPC envelope and in computational science applications R&D, it seems reasonable to expect that the Qatar Foundation’s Research and Development program intends to focus some of its resources on these areas.  This expectation is reinforced by the recent announcement of a search for a permanent Executive Director for NCRI.

Qatar R&D Priorities

As stated in the Qatar National Vision 2030 document:

Qatar is at a crossroads. The country’s abundant wealth creates both previously undreamt of opportunities and formidable challenges. It is now imperative for Qatar to choose the best development path that is compatible with the views of its leadership and the aspirations of its people.

The vision statement for the Qatar National Research Strategy is:

Qatar will be a leading center for research and development excellence and innovation.

In implementing its national research strategy, Qatar has chosen a number of cross-cutting research priorities.  Among these, at least four are noteworthy from an HPC perspective:

  • Energy Security;
  • Water Security;
  • Cyber Security; and
  • Biomedical Research.

While Qatar has abundant oil and gas supplies, its focus is on transitioning its own energy economy to renewable sources, principally solar.  Qatar depends on desalinating seawater to provide fresh water to meet virtually all of its domestic needs.  Thus, new water purification technologies that provide higher throughput at lower energy costs are critically important.  Qatar is one of the most connected countries in the world. Culturally, economically, politically, socially, scientifically and financially the nation has risen to global prominence because of an infrastructure and communications network that is highly automated.  With this reliance on computing and networking technologies, Qatar has become one of the world’s most visible targets for cyber security attacks.  So, cyber security is also a high priority.  Biomedical research in Qatar is concentrated on genomic medicine, biomedical engineering, stem cell and gene-based therapies with primary focus in diabetes, cancer, and neurological diseases.  Additionally, the Qatar foundation’s healthcare initiative involves the Sidra Medical and Research Center – an ultramodern, all-digital academic medical center which intends to set new standards in patient care.

Since much of Qatar’s infrastructure is quite new and since Doha is growing rapidly, one can think of it as a venue for the development of a smart city.  That makes Doha an interesting place for Urban Studies – and provides an additional data-intensive computing research area to the mix.  Dr. Zacharia elaborated on this theme during a panel discussion at the International Supercomputing Conference’s Think Tank on Big Data this past Summer.

Based on our understanding of efforts elsewhere to deal with similar challenges, it seems safe to say that any serious attack on these problems will require very significant computing capabilities.

HPC Budget Estimate

So, Qatar has the national financial resources, core leadership and R&D priorities to justify becoming a significant player in global HPC.  How significant could Qatar become – and what would it cost?

If we assume that the Qatar Foundation’s R&D enterprise is about the same size as the US Department of Energy’s (DOE) Office of Science, that would size it at about $5 billion per annum.  The Office of Science spends roughly $210 million per year, or 4% of its budget, to support its three large computing activities.  This collection consists of a production facility, NERSC, at about $65 million/year and two “leadership” facilities, the Argonne facility (ALCF) at about $60 million/year and the Oak Ridge facility (OLCF) at about $85 million/year.  The OLCF currently houses Titan, the number 2 machine on the Top500 list.

The numbers above represent recurring costs.  If we look at acquisition costs, then consider Tianhe-2 which is currently at the top of the Top500 list – and is roughly twice as fast as Titan.  Reportedly, the acquisition of Tihane-2 cost $390 million.

Another way to bound the budget for a high-end machine would be to look at its development cost.  At a US House of Representatives hearing earlier this year, Dr. Rick Stevens from DOE’s Argonne National Laboratory reported that the investment required for DOE to field an exascale system by 2020 would be about $400 million/year (you’ll find the relevant discussion about 62 minutes into this YouTube video of the hearing).

So, given all of this, we can make a few rough estimates.  If QF R&D were to field a Titan sized machine, perhaps it would cost about $80 million/year, or about 1.6% of an assumed $5 billion budget.  Suppose twice as fast (i.e. Tihane-2 sized) cost twice as much.  That would yield 3.2% or $160 million/year.

Developing an exascale system is a totally different matter.  But suppose there is some room for savings in the $400 million/year estimate.  Maybe $300 million/year would suffice.  These scenarios would cost 8% or 6% of an assumed $5 billion budget.  Also, since developing a next-generation machine would not satisfy current or immediate future requirements, one would need to include an additional 1.6% to 3.2% to cover those needs.

In summary, if Qatar were to require a nice production supercomputing facility, one could be operated for about $60 million/year.  Going beyond that could range as high as $400 – $500 million/year.

Commitment

We’ve been discussing some pretty large budget numbers for any country – and Qatar is a small (but prosperous) one.  Given the computing needs of its research priorities, might Qatar commit to being a major HPC player?

In a recent article, Dr. Zacharia summarized his view of Qatar’s R&D goals as being “ambitious” but “achievable” and went on to say:

What’s taking place in Qatar is unprecedented in recent times. In many ways it harkens back to the time when the big national laboratories were established in the United States during the establishment of NASA. We have the opportunity and responsibility to build this knowledge-based economy.

The article also presents some summary expectations for the next five years, over which QF R&D intends to support:

  • A new 200,000 square meter R&D complex;
  • 2,000 new researchers at QF R&D;
  • 8,000 private sector researchers; and
  • 1,000 Ph.D. graduates.

Globally, R&D and supercomputing expenditures as a percent of GDP vary widely.  Based on statistics drawn from the World Bank, the CIA World Factbook and an IDC study done for the European Commission, we can make a few relevant comparisons:

Country/Region

R&D Expenditure

[% of GDP]

Supercomputing Expenditure

[% of GDP]

United States

2.9%

0.0089%

European Union

1.8%

0.0049%

Japan

3.4%

0.0055%

China

1.7%

0.0014%

Korea

3.7%

0.0083%

Singapore

2.4%

0.0100%

Qatar

2.8%

?

 

The 2.8% of GDP number cited for Qatar comes from a Knoxville News Sentinel article written in August of 2012.  If correct, it would place Qatar in the same R&D expenditure range as the US or Singapore, well above the EU or China, but lower than Japan or Korea.  If Qatar were to spend 0.01% of GDP on supercomputing (i.e. in the range of the US or Singapore), this would provide roughly $20 million/year.  That would be enough to be a very credible HPC player.  To move into the top ranks, Qatar would probably need to spend about 0.030% to 0.045% of GDP.

Could Qatar make a big commitment to HPC?  So far, they’ve turned a poor economy based on pearling and fishing into one yielding the world’s highest per capita income.  The Qatari satellite TV station Al-Jazeera has become one of the most important broadcasters, not only in the Arab world, but globally.  Qatar is quite active on the regional and world stage, having mediated in disputes in the Middle East and Africa.  Qatar also won the bid to host the 2022 World Cup – the world’s largest sporting event.  Qatar is rapidly developing Doha and expanding its infrastructure.  In fact, Qatar is expected to spend about $100 billion on infrastructure development in Doha over the next 10 years.  Large numbers of buildings are under construction, there is a huge expansion to its transportation network, including the addition of new highways, the construction of a new airport, and the construction of a metro system.  For a visual impression of what the Qataris are doing, take a look at these videos: Doha Bay Crossing and Lusail Expressway.

Most importantly, rather than focusing on tourism, as some other Middle Eastern countries have, Qatar has chosen to focus its resources on developing a knowledge economy.  HPC will need to be an integral part of any such economy.

Qatar has become known for “punching above its weight”.  Time will tell if it chooses to punch above its weight in HPC.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new half-petaflops research supercomputer, named Genius, at Flemish research university KU Leuven. The system is built to run artificial intelligence (AI) workloads and, as part Read more…

By Tiffany Trader

New Exascale System for Earth Simulation Introduced

April 23, 2018

After four years of development, the Energy Exascale Earth System Model (E3SM) will be unveiled today and released to the broader scientific community this month. The E3SM project is supported by the Department of Energy Read more…

By Staff

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new half-petaflops research supercomputer, named Genius, at Flemish research university KU Leuven. The system is built Read more…

By Tiffany Trader

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Leading Solution Providers

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This