Fair Pricing Key to Node Sharing in HPC

By Alex Breslow, University of California San Diego

November 13, 2013

In HPC systems, jobs almost never share compute nodes. Each user requests the number of physical machines that they need to run their job, and then they run it in isolation.

While this practice was clearly the best choice for distributed applications in the pre-multi core era, the same is not necessarily true for the compute nodes of today, which integrate tens to hundreds of cores. Instead, distributed application co-location, whereby multiple parallel codes share the cores on sets of compute nodes, is a pragmatic choice for those seeking to optimize machine performance and power efficiency.

A previous study we did demonstrated co-locating pairs of 1024 process MPI jobs across 2048 cores decreases the run time of most applications and thus improves system throughput and energy efficiency by 10 to 20%.

Figure 1: An example of running 2 two-node jobs in isolation versus co-located: Switching from isolation (left) to co-location (right), where each socket is divided between applications improves system performance and energy efficiency.
Figure 1: An example of running 2 two-node jobs in isolation versus co-located: Switching from isolation (left) to co-location (right), where each socket is divided between applications improves system performance and energy efficiency.

However, not all applications benefit from distributed co-location: a significant number do slow down due to contention from their co-runners. While this slowdown is almost universally offset by gains in the performance of the co-running applications, and therefore still results in improved throughput, it causes an unfair inequity in pricing.This unfairness arises from the typical HPC accounting policy, which charges users proportionally to application run time. An example of this pricing unfairness is shown in Figure 2.  The plot shows the price a user running the GTC code would expect to pay when their job is co-run with each of the applications on the x-axis.  Under the current pricing model, the user would pay 60% more when their job is co-run with MILC instead of with AMG.

Figure 2: The current pricing mechanism (SOP) penalizes the user for co-locating their job by charging them more when their job degrades more.
Figure 2: The current pricing mechanism (SOP) penalizes the user for co-locating their job by charging them more when their job degrades more.

In this current pricing scheme, the user not only suffers from a decrease in utility caused by the increased job run time, but also faces an additional associated surcharge.  Our work, published and to be presented at SC’13 as one of the best paper candidates, targets this problem and introduces contention-aware fair pricing, where a user pays progressively less and less as their job is degraded more and more.

However, implementing such a policy is a challenge, as it requires a non-intrusive mechanism that precisely quantifies individual application degradation caused by co-running applications.  While previous work has employed offline profiling techniques to determine this degradation, we argue that such techniques are not always practical in a production setting, where online application behavior can significantly deviate from offline characterizations [3-6].  Instead we need a dynamic, lightweight, runtime system or OS service to detect such contention.

To satisfy these objectives, we have developed a low-overhead daemon, the Persistent Online Precise Pricing Agent (POPPA).  POPPA uses a fine-grain precise pricing shutter, a novel mechanism capable of measuring contention between applications with less than 1% overhead and with a mean absolute prediction error of 4%.  The shutter mechanism works by alternating the execution environment of each application between one where contention from co-runners is present, and one where it is effectively absent.  POPPA achieves this by cyclically pausing all but one application in a round-robin fashion and measuring the spike in the performance of the lone running application versus when it was co-located.

Figure 3: POPPA alternates application execution between isolation and co-location.  P and S are tunable parameters.
Figure 3: POPPA alternates application execution between isolation and co-location. P and S are tunable parameters.

The above shows the mechanism in action.  During the first phase, the POPPA daemon is dormant and threads from both applications execute.  Next, the instructions per cycle (IPC) of each application is derived from measurements taken using the hardware’s performance monitoring unit.  Then Job B is put to sleep, and the IPC of the Job A is measured.  Then Job B is woken up, and the IPC of both applications is measured.  This process then repeats but with Jobs A and B switching roles.

The POPPA daemon is fully parameterizable to allow for machine- and application-specific tradeoffs. In particular, we can configure the length of the periods between shutter events, the length of the shutter time, as well as the length for pre- and post-shutter measurements. Since each shutter requires all applications but one to sleep, the sleeping applications cannot make progress and thus lose performance during the shutter, which results in run time overhead.  By controlling the ratio between shutter time and shutter interval, this overhead can be carefully tuned to an acceptable value.  For our work, we decided on a shutter interval of 200 ms and a shutter length of 3.2 ms, as these values offered high prediction accuracy while keeping the average overhead under 1%.

This mechanism allows POPPA to be highly accurate, with a mean absolute error of 4%. The low prediction error stems from the fact that the system does not rely on a single measurement for determining degradation estimates, but rather can base its analysis on hundreds to thousands of fine-grain measurements that are uniformly spaced throughout the execution of each co-running application.  As a result, POPPA detects phase-level behaviors in applications that allow it to construct more accurate prediction estimates.

Based on these predictions, we then implement a fair pricing strategy and discount the user relative to their predicted degradation due to co-runner interference.  Our philosophy is that when a user’s application is degraded by 20%, the simplest and most intuitive pricing policy is to discount that user by 20%.  This policy allows the user to easily reason about how they will be priced and to also reap the benefit of a discount, which directly compensates for the additional time taken to run their job.  This compensation encourages users to embrace co-location, as the discounts allow their resource allocation to go further.

The art of precise and fair pricing is a key for designing future, agile, software systems and opens the door to new ways to utilize the rising class of multi- and many-core nodes.  If this article has piqued your interest, we invite you to our talk at the SC’13 conference (Title: “Enabling Fair Pricing on HPC Systems with Node Sharing”, to be presented on November 20th at 10:30AM in rooms 401/402/403). The contact author for this work is Alex Breslow, PhD student at the University of California San Diego.  Ananta Tiwari and Laura Carrington are research scientists at San Diego Supercomputer Center, Martin Schulz is a computer scientist at Lawrence Livermore National Laboratory, and  Lingjia Tang and Jason Mars are assistant professors in the University of Michigan EECS Department.

See Also:

 Cache pirating: Measuring the Curse of the Shared Cache. In Parallel Processing (ICPP)

Quantifying Effects of Shared On-chip Resource Interference for Consolidated Virtual Machines

Bubble-up: Increasing Utilization in Modern Warehouse Scale Computers via Sensible Co-locations

Managing Performance Interference Effects for QoS-Aware Clouds

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

GDPR’s Impact on Scientific Research Uncertain

May 24, 2018

Amid the angst over preparations—or lack thereof—for new European Union data protections entering into force at week’s end is the equally worrisome issue of the rules’ impact on scientific research. Among the Read more…

By George Leopold

Intel Pledges First Commercial Nervana Product ‘Spring Crest’ in 2019

May 24, 2018

At its AI developer conference in San Francisco yesterday, Intel embraced a holistic approach to AI and showed off a broad AI portfolio that includes Xeon processors, Movidius technologies, FPGAs and Intel’s Nervana Neural Network Processors (NNPs), based on the technology it acquired in 2016. Read more…

By Tiffany Trader

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Francisco, one would be tempted to dismiss its claims of inventing Read more…

By John Russell

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Mastering the Big Data Challenge in Cognitive Healthcare

Patrick Chain, genomics researcher at Los Alamos National Laboratory, posed a question in a recent blog: What if a nurse could swipe a patient’s saliva and run a quick genetic test to determine if the patient’s sore throat was caused by a cold virus or a bacterial infection? Read more…

Silicon Startup Raises ‘Prodigy’ for Hyperscale/AI Workloads

May 23, 2018

There's another silicon startup coming onto the HPC/hyperscale scene with some intriguing and bold claims. Silicon Valley-based Tachyum Inc., which has been emerging from stealth over the last year and a half, is unveili Read more…

By Tiffany Trader

Intel Pledges First Commercial Nervana Product ‘Spring Crest’ in 2019

May 24, 2018

At its AI developer conference in San Francisco yesterday, Intel embraced a holistic approach to AI and showed off a broad AI portfolio that includes Xeon processors, Movidius technologies, FPGAs and Intel’s Nervana Neural Network Processors (NNPs), based on the technology it acquired in 2016. Read more…

By Tiffany Trader

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Franci Read more…

By John Russell

Silicon Startup Raises ‘Prodigy’ for Hyperscale/AI Workloads

May 23, 2018

There's another silicon startup coming onto the HPC/hyperscale scene with some intriguing and bold claims. Silicon Valley-based Tachyum Inc., which has been eme Read more…

By Tiffany Trader

Japan Meteorological Agency Takes Delivery of Pair of Crays

May 21, 2018

Cray has supplied two identical Cray XC50 supercomputers to the Japan Meteorological Agency (JMA) in northwestern Tokyo. Boasting more than 18 petaflops combine Read more…

By Tiffany Trader

ASC18: Final Results Revealed & Wrapped Up

May 17, 2018

It was an exciting week at ASC18 in Nanyang, China. The student teams braved extreme heat, extremely difficult applications, and extreme competition in order to cross the cluster competition finish line. The gala awards ceremony took place on Wednesday. The auditorium was packed with student teams, various dignitaries, the media, and other interested parties. So what happened? Read more…

By Dan Olds

Spring Meetings Underscore Quantum Computing’s Rise

May 17, 2018

The month of April 2018 saw four very important and interesting meetings to discuss the state of quantum computing technologies, their potential impacts, and th Read more…

By Alex R. Larzelere

Quantum Network Hub Opens in Japan

May 17, 2018

Following on the launch of its Q Commercial quantum network last December with 12 industrial and academic partners, the official Japanese hub at Keio University is now open to facilitate the exploration of quantum applications important to science and business. The news comes a week after IBM announced that North Carolina State University was the first U.S. university to join its Q Network. Read more…

By Tiffany Trader

Democratizing HPC: OSC Releases Version 1.3 of OnDemand

May 16, 2018

Making HPC resources readily available and easier to use for scientists who may have less HPC expertise is an ongoing challenge. Open OnDemand is a project by t Read more…

By John Russell

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

CFO Steps down in Executive Shuffle at Supermicro

January 31, 2018

Supermicro yesterday announced senior management shuffling including prominent departures, the completion of an audit linked to its delayed Nasdaq filings, and Read more…

By John Russell

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

Deep Learning Portends ‘Sea Change’ for Oil and Gas Sector

February 1, 2018

The billowing compute and data demands that spurred the oil and gas industry to be the largest commercial users of high-performance computing are now propelling Read more…

By Tiffany Trader

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Sympo Read more…

By Staff

Part One: Deep Dive into 2018 Trends in Life Sciences HPC

March 1, 2018

Life sciences is an interesting lens through which to see HPC. It is perhaps not an obvious choice, given life sciences’ relative newness as a heavy user of H Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This