Fair Pricing Key to Node Sharing in HPC

By Alex Breslow, University of California San Diego

November 13, 2013

In HPC systems, jobs almost never share compute nodes. Each user requests the number of physical machines that they need to run their job, and then they run it in isolation.

While this practice was clearly the best choice for distributed applications in the pre-multi core era, the same is not necessarily true for the compute nodes of today, which integrate tens to hundreds of cores. Instead, distributed application co-location, whereby multiple parallel codes share the cores on sets of compute nodes, is a pragmatic choice for those seeking to optimize machine performance and power efficiency.

A previous study we did demonstrated co-locating pairs of 1024 process MPI jobs across 2048 cores decreases the run time of most applications and thus improves system throughput and energy efficiency by 10 to 20%.

Figure 1: An example of running 2 two-node jobs in isolation versus co-located: Switching from isolation (left) to co-location (right), where each socket is divided between applications improves system performance and energy efficiency.
Figure 1: An example of running 2 two-node jobs in isolation versus co-located: Switching from isolation (left) to co-location (right), where each socket is divided between applications improves system performance and energy efficiency.

However, not all applications benefit from distributed co-location: a significant number do slow down due to contention from their co-runners. While this slowdown is almost universally offset by gains in the performance of the co-running applications, and therefore still results in improved throughput, it causes an unfair inequity in pricing.This unfairness arises from the typical HPC accounting policy, which charges users proportionally to application run time. An example of this pricing unfairness is shown in Figure 2.  The plot shows the price a user running the GTC code would expect to pay when their job is co-run with each of the applications on the x-axis.  Under the current pricing model, the user would pay 60% more when their job is co-run with MILC instead of with AMG.

Figure 2: The current pricing mechanism (SOP) penalizes the user for co-locating their job by charging them more when their job degrades more.
Figure 2: The current pricing mechanism (SOP) penalizes the user for co-locating their job by charging them more when their job degrades more.

In this current pricing scheme, the user not only suffers from a decrease in utility caused by the increased job run time, but also faces an additional associated surcharge.  Our work, published and to be presented at SC’13 as one of the best paper candidates, targets this problem and introduces contention-aware fair pricing, where a user pays progressively less and less as their job is degraded more and more.

However, implementing such a policy is a challenge, as it requires a non-intrusive mechanism that precisely quantifies individual application degradation caused by co-running applications.  While previous work has employed offline profiling techniques to determine this degradation, we argue that such techniques are not always practical in a production setting, where online application behavior can significantly deviate from offline characterizations [3-6].  Instead we need a dynamic, lightweight, runtime system or OS service to detect such contention.

To satisfy these objectives, we have developed a low-overhead daemon, the Persistent Online Precise Pricing Agent (POPPA).  POPPA uses a fine-grain precise pricing shutter, a novel mechanism capable of measuring contention between applications with less than 1% overhead and with a mean absolute prediction error of 4%.  The shutter mechanism works by alternating the execution environment of each application between one where contention from co-runners is present, and one where it is effectively absent.  POPPA achieves this by cyclically pausing all but one application in a round-robin fashion and measuring the spike in the performance of the lone running application versus when it was co-located.

Figure 3: POPPA alternates application execution between isolation and co-location.  P and S are tunable parameters.
Figure 3: POPPA alternates application execution between isolation and co-location. P and S are tunable parameters.

The above shows the mechanism in action.  During the first phase, the POPPA daemon is dormant and threads from both applications execute.  Next, the instructions per cycle (IPC) of each application is derived from measurements taken using the hardware’s performance monitoring unit.  Then Job B is put to sleep, and the IPC of the Job A is measured.  Then Job B is woken up, and the IPC of both applications is measured.  This process then repeats but with Jobs A and B switching roles.

The POPPA daemon is fully parameterizable to allow for machine- and application-specific tradeoffs. In particular, we can configure the length of the periods between shutter events, the length of the shutter time, as well as the length for pre- and post-shutter measurements. Since each shutter requires all applications but one to sleep, the sleeping applications cannot make progress and thus lose performance during the shutter, which results in run time overhead.  By controlling the ratio between shutter time and shutter interval, this overhead can be carefully tuned to an acceptable value.  For our work, we decided on a shutter interval of 200 ms and a shutter length of 3.2 ms, as these values offered high prediction accuracy while keeping the average overhead under 1%.

This mechanism allows POPPA to be highly accurate, with a mean absolute error of 4%. The low prediction error stems from the fact that the system does not rely on a single measurement for determining degradation estimates, but rather can base its analysis on hundreds to thousands of fine-grain measurements that are uniformly spaced throughout the execution of each co-running application.  As a result, POPPA detects phase-level behaviors in applications that allow it to construct more accurate prediction estimates.

Based on these predictions, we then implement a fair pricing strategy and discount the user relative to their predicted degradation due to co-runner interference.  Our philosophy is that when a user’s application is degraded by 20%, the simplest and most intuitive pricing policy is to discount that user by 20%.  This policy allows the user to easily reason about how they will be priced and to also reap the benefit of a discount, which directly compensates for the additional time taken to run their job.  This compensation encourages users to embrace co-location, as the discounts allow their resource allocation to go further.

The art of precise and fair pricing is a key for designing future, agile, software systems and opens the door to new ways to utilize the rising class of multi- and many-core nodes.  If this article has piqued your interest, we invite you to our talk at the SC’13 conference (Title: “Enabling Fair Pricing on HPC Systems with Node Sharing”, to be presented on November 20th at 10:30AM in rooms 401/402/403). The contact author for this work is Alex Breslow, PhD student at the University of California San Diego.  Ananta Tiwari and Laura Carrington are research scientists at San Diego Supercomputer Center, Martin Schulz is a computer scientist at Lawrence Livermore National Laboratory, and  Lingjia Tang and Jason Mars are assistant professors in the University of Michigan EECS Department.

See Also:

 Cache pirating: Measuring the Curse of the Shared Cache. In Parallel Processing (ICPP)

Quantifying Effects of Shared On-chip Resource Interference for Consolidated Virtual Machines

Bubble-up: Increasing Utilization in Modern Warehouse Scale Computers via Sensible Co-locations

Managing Performance Interference Effects for QoS-Aware Clouds

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Data-Hungry Algorithms and the Thirst for AI

March 29, 2017

At Tabor Communications’ Leverage Big Data + EnterpriseHPC Summit in Florida last week, esteemed HPC professional Jay Boisseau, chief HPC technology strategist at Dell EMC, engaged the audience with his presentation, “Big Computing, Big Data, Big Trends, Big Results.” Read more…

By Tiffany Trader

Bill Gropp – Pursuing the Next Big Thing at NCSA

March 28, 2017

About eight months ago Bill Gropp was elevated to acting director of the National Center for Supercomputing Applications (NCSA). Read more…

By John Russell

UK to Launch Six Major HPC Centers

March 27, 2017

Six high performance computing centers will be formally launched in the U.K. later this week intended to provide wider access to HPC resources to U.K. Read more…

By John Russell

AI in the News: Rao in at Intel, Ng out at Baidu, Nvidia on at Tencent Cloud

March 26, 2017

Just as AI has become the leitmotif of the advanced scale computing market, infusing much of the conversation about HPC in commercial and industrial spheres, it also is impacting high-level management changes in the industry. Read more…

By Doug Black

HPE Extreme Performance Solutions

Quants Achieving Maximum Compute Power without the Learning Curve

The financial services industry is a fast-paced and data-intensive environment, and financial firms are realizing that they must modernize their IT infrastructures and invest in high performance computing (HPC) tools in order to survive. Read more…

Scalable Informatics Ceases Operations

March 23, 2017

On the same day we reported on the uncertain future for HPC compiler company PathScale, we are sad to learn that another HPC vendor, Scalable Informatics, is closing its doors. Read more…

By Tiffany Trader

‘Strategies in Biomedical Data Science’ Advances IT-Research Synergies

March 23, 2017

“Strategies in Biomedical Data Science: Driving Force for Innovation” by Jay A. Etchings is both an introductory text and a field guide for anyone working with biomedical data. Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Google Launches New Machine Learning Journal

March 22, 2017

On Monday, Google announced plans to launch a new peer review journal and “ecosystem” Read more…

By John Russell

Data-Hungry Algorithms and the Thirst for AI

March 29, 2017

At Tabor Communications’ Leverage Big Data + EnterpriseHPC Summit in Florida last week, esteemed HPC professional Jay Boisseau, chief HPC technology strategist at Dell EMC, engaged the audience with his presentation, “Big Computing, Big Data, Big Trends, Big Results.” Read more…

By Tiffany Trader

Bill Gropp – Pursuing the Next Big Thing at NCSA

March 28, 2017

About eight months ago Bill Gropp was elevated to acting director of the National Center for Supercomputing Applications (NCSA). Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Leading Solution Providers

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This