Fair Pricing Key to Node Sharing in HPC

By Alex Breslow, University of California San Diego

November 13, 2013

In HPC systems, jobs almost never share compute nodes. Each user requests the number of physical machines that they need to run their job, and then they run it in isolation.

While this practice was clearly the best choice for distributed applications in the pre-multi core era, the same is not necessarily true for the compute nodes of today, which integrate tens to hundreds of cores. Instead, distributed application co-location, whereby multiple parallel codes share the cores on sets of compute nodes, is a pragmatic choice for those seeking to optimize machine performance and power efficiency.

A previous study we did demonstrated co-locating pairs of 1024 process MPI jobs across 2048 cores decreases the run time of most applications and thus improves system throughput and energy efficiency by 10 to 20%.

Figure 1: An example of running 2 two-node jobs in isolation versus co-located: Switching from isolation (left) to co-location (right), where each socket is divided between applications improves system performance and energy efficiency.
Figure 1: An example of running 2 two-node jobs in isolation versus co-located: Switching from isolation (left) to co-location (right), where each socket is divided between applications improves system performance and energy efficiency.

However, not all applications benefit from distributed co-location: a significant number do slow down due to contention from their co-runners. While this slowdown is almost universally offset by gains in the performance of the co-running applications, and therefore still results in improved throughput, it causes an unfair inequity in pricing.This unfairness arises from the typical HPC accounting policy, which charges users proportionally to application run time. An example of this pricing unfairness is shown in Figure 2.  The plot shows the price a user running the GTC code would expect to pay when their job is co-run with each of the applications on the x-axis.  Under the current pricing model, the user would pay 60% more when their job is co-run with MILC instead of with AMG.

Figure 2: The current pricing mechanism (SOP) penalizes the user for co-locating their job by charging them more when their job degrades more.
Figure 2: The current pricing mechanism (SOP) penalizes the user for co-locating their job by charging them more when their job degrades more.

In this current pricing scheme, the user not only suffers from a decrease in utility caused by the increased job run time, but also faces an additional associated surcharge.  Our work, published and to be presented at SC’13 as one of the best paper candidates, targets this problem and introduces contention-aware fair pricing, where a user pays progressively less and less as their job is degraded more and more.

However, implementing such a policy is a challenge, as it requires a non-intrusive mechanism that precisely quantifies individual application degradation caused by co-running applications.  While previous work has employed offline profiling techniques to determine this degradation, we argue that such techniques are not always practical in a production setting, where online application behavior can significantly deviate from offline characterizations [3-6].  Instead we need a dynamic, lightweight, runtime system or OS service to detect such contention.

To satisfy these objectives, we have developed a low-overhead daemon, the Persistent Online Precise Pricing Agent (POPPA).  POPPA uses a fine-grain precise pricing shutter, a novel mechanism capable of measuring contention between applications with less than 1% overhead and with a mean absolute prediction error of 4%.  The shutter mechanism works by alternating the execution environment of each application between one where contention from co-runners is present, and one where it is effectively absent.  POPPA achieves this by cyclically pausing all but one application in a round-robin fashion and measuring the spike in the performance of the lone running application versus when it was co-located.

Figure 3: POPPA alternates application execution between isolation and co-location.  P and S are tunable parameters.
Figure 3: POPPA alternates application execution between isolation and co-location. P and S are tunable parameters.

The above shows the mechanism in action.  During the first phase, the POPPA daemon is dormant and threads from both applications execute.  Next, the instructions per cycle (IPC) of each application is derived from measurements taken using the hardware’s performance monitoring unit.  Then Job B is put to sleep, and the IPC of the Job A is measured.  Then Job B is woken up, and the IPC of both applications is measured.  This process then repeats but with Jobs A and B switching roles.

The POPPA daemon is fully parameterizable to allow for machine- and application-specific tradeoffs. In particular, we can configure the length of the periods between shutter events, the length of the shutter time, as well as the length for pre- and post-shutter measurements. Since each shutter requires all applications but one to sleep, the sleeping applications cannot make progress and thus lose performance during the shutter, which results in run time overhead.  By controlling the ratio between shutter time and shutter interval, this overhead can be carefully tuned to an acceptable value.  For our work, we decided on a shutter interval of 200 ms and a shutter length of 3.2 ms, as these values offered high prediction accuracy while keeping the average overhead under 1%.

This mechanism allows POPPA to be highly accurate, with a mean absolute error of 4%. The low prediction error stems from the fact that the system does not rely on a single measurement for determining degradation estimates, but rather can base its analysis on hundreds to thousands of fine-grain measurements that are uniformly spaced throughout the execution of each co-running application.  As a result, POPPA detects phase-level behaviors in applications that allow it to construct more accurate prediction estimates.

Based on these predictions, we then implement a fair pricing strategy and discount the user relative to their predicted degradation due to co-runner interference.  Our philosophy is that when a user’s application is degraded by 20%, the simplest and most intuitive pricing policy is to discount that user by 20%.  This policy allows the user to easily reason about how they will be priced and to also reap the benefit of a discount, which directly compensates for the additional time taken to run their job.  This compensation encourages users to embrace co-location, as the discounts allow their resource allocation to go further.

The art of precise and fair pricing is a key for designing future, agile, software systems and opens the door to new ways to utilize the rising class of multi- and many-core nodes.  If this article has piqued your interest, we invite you to our talk at the SC’13 conference (Title: “Enabling Fair Pricing on HPC Systems with Node Sharing”, to be presented on November 20th at 10:30AM in rooms 401/402/403). The contact author for this work is Alex Breslow, PhD student at the University of California San Diego.  Ananta Tiwari and Laura Carrington are research scientists at San Diego Supercomputer Center, Martin Schulz is a computer scientist at Lawrence Livermore National Laboratory, and  Lingjia Tang and Jason Mars are assistant professors in the University of Michigan EECS Department.

See Also:

 Cache pirating: Measuring the Curse of the Shared Cache. In Parallel Processing (ICPP)

Quantifying Effects of Shared On-chip Resource Interference for Consolidated Virtual Machines

Bubble-up: Increasing Utilization in Modern Warehouse Scale Computers via Sensible Co-locations

Managing Performance Interference Effects for QoS-Aware Clouds

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

STEM-Trekker Badisa Mosesane Attends CERN Summer Student Program

June 27, 2017

Badisa Mosesane, an undergraduate scholar who studies computer science at the University of Botswana in Gaborone, recently joined other students from developing nations around the world in Geneva, Switzerland to particip Read more…

By Elizabeth Leake, STEM-Trek

The EU Human Brain Project Reboots but Supercomputing Still Needed

June 26, 2017

The often contentious, EU-funded Human Brain Project whose initial aim was fixed firmly on full-brain simulation is now in the midst of a reboot targeting a more modest goal – development of informatics tools and data/ Read more…

By John Russell

DOE Launches Chicago Quantum Exchange

June 26, 2017

While many of us were preoccupied with ISC 2017 last week, the launch of the Chicago Quantum Exchange went largely unnoticed. So what is such a thing? It is a Department of Energy sponsored collaboration between the Univ Read more…

By John Russell

UMass Dartmouth Reports on HPC Day 2017 Activities

June 26, 2017

UMass Dartmouth's Center for Scientific Computing & Visualization Research (CSCVR) organized and hosted the third annual "HPC Day 2017" on May 25th. This annual event showcases on-going scientific research in Massach Read more…

By Gaurav Khanna

HPE Extreme Performance Solutions

Creating a Roadmap for HPC Innovation at ISC 2017

In an era where technological advancements are driving innovation to every sector, and powering major economic and scientific breakthroughs, high performance computing (HPC) is crucial to tackle the challenges of today and tomorrow. Read more…

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascale” award), parsed out additional information ab Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid whoops and hollers from the crowd, Thomas Sterling presented t Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out plans to push deeper into climate science and develop more gran Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale companies and their embrace of AI and deep learning – tha Read more…

By Doug Black

DOE Launches Chicago Quantum Exchange

June 26, 2017

While many of us were preoccupied with ISC 2017 last week, the launch of the Chicago Quantum Exchange went largely unnoticed. So what is such a thing? It is a D Read more…

By John Russell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid wh Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out pla Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale Read more…

By Doug Black

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big d Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “g Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This