Hurricane Force Supercomputing: Petascale Simulations of Sandy

By Peter Johnsen, Mark Straka, Melvyn Shapiro, Alan Norton & Tom Galerneau

November 14, 2013

The devastation incurred by the landfall of Hurricane Sandy on the northeast coast of the United States just over one year ago exemplifies the need for further advances in accuracy and reliability in numerical weather prediction.  High resolution numerical weather simulations carried out on hundreds of thousands of processors on the largest supercomputers are providing these very insights.

The National Center for Atmospheric Research (NCAR) Weather Research and Forecasting (WRF) model has been employed on the largest yet storm prediction model using real data of over 4 billion points to simulate the landfall of Hurricane Sandy. Using an unprecedented 13,680 nodes (437,760 cores) of the Cray XE6 Blue Waters supercomputer at the National Center for Supercomputing Applications  at the University of Illinois, the team of Peter Johnsen from Cray, Inc., Mark Straka from NCSA, and Mel Shapiro, Alan Norton, and Tom Galarneau from NCAR achieved an unprecedented level of performance for any weather model.  The model used approximately 4 billion grid points at an extremely fine resolution of 500 meters.  Forecast data was written and analyzed by the NCAR team members using the NCAR VAPOR visualization suite.

The landfall of Hurricane Sandy along the New Jersey shoreline late on October 30th, 2012 produced a catastrophic storm surge extending from New Jersey to Rhode Island. The research highlighted here demonstrates the capability of the NCSA/Cray Blue Waters supercomputer to conduct a cloud-resolving WRF-ARW simulation of an intense cyclone over a relatively large domain at a very-fine spatial resolution.

The Blue Waters system is a Cray XE/XK hybrid machine composed of 362,240 AMD 6276 “Interlagos” processors and 4224 NVIDIA GK110 Kepler accelerators all connected by the Cray Gemini 3-D (24^3) torus interconnect. It provides sustained performance of 1 petaflop on a range of real-world science and engineering applications. Our motivation was to reduce time to solution as much as was under our control without major source code restructuring. The WRF version 3.3.1 source code was modified from the public distribution chiefly with concerns for reducing the I/O burden per MPI task and limiting the necessary information to a single MPI rank.

Topology Considerations Are Vital

Domain configuration and process layout using MPI rank ordering features of the Cray XE6 job scheduler (ALPS) form a cornerstone in efficiently using the XE6 3D torus interconnect and allowing WRF to scale this successfully.  We used the Cray grid_order utility to generate improved placement of the ranks for the primary communication pattern in the WRF solver, which is nearest neighbor halo exchanges. Reducing the number of neighbors communicating off-node is the primary goal. Using an alternate placement allows us to get 3 communication partners for most MPI ranks on the same node, instead of only 2, as would be with the default placement.  At very high scales, this strategy improves overall WRF performance by 18% or more.

We found the most effective way to run WRF on the AMD Bulldozer core-modules was to exploit WRF’s “hybrid” MPI/OpenMP structure, utilizing 2 OpenMP threads per MPI rank.  This puts 16 MPI ranks on each XE6 node.

The optimized placement we’ve employed also has the benefit of sending smaller east-west direction exchanges off-node and keeping as many larger north-south messages on-node as possible, resulting in 75% fewer bytes being sent over the network. We verified empirically the long-known tactic of decomposing WRF’s domain with many fewer MPI ranks in the X direction than the Y, as this leads to longer vectors on the inner compute loops.

Our simulations yielded an average Tflop count of 32.454 Tflops per second, per simulation time step. Parallel efficiency was still above 60% even on 13,680 XE6 nodes. Over 12 million off-node halo exchange messages totaling 280 GB were processed every WRF time step.

I/O Considerations at Scale

On the Blue Waters system, the Lustre file system was used for all file activity.

Two techniques were used to handle the large I/O requirements for the Sandy simulation –

  1. Parallel NetCDF (PnetCDF), jointly developed by Northwestern University and Argonne National Laboratory, was used where practical.  The MPICH library from Cray has a tuned MPI-IO implementation that aligns parallel I/O with the Lustre file system.  This format is required when post-processing tools are used.
  2. WRF has a multi-file option where each subdomain, or MPI rank, reads and writes unique files.  This was used for very large restart files and some of the pre-processing steps.  The Blue Waters Lustre file system was able to open and read 145,920 restart files in 18 seconds for a 4560 node case.

Additionally, use of WRF’s auxiliary history output options to select only the output fields of greatest interest, thus reducing the volume of output considerably, was of great utility in our work.

graph_1

Scalability of Hurricane Sandy run.  Sustained performance in Tflops/second (y-axis, left) and parallel efficiency over base run on 8,192 cores (y-axis, right) are shown.

Forecast Analysis and Validation

The following figures show a comparison of the maximum radar reflectivity (a surrogate for precipitation) from the simulations at 3-km and 500-m horizontal resolution. In both simulations, a broad region of heavy precipitation is located on the west and southwest side of Sandy, and is organized in a region where warm moist northeasterly flow intersects a northwesterly surge of cold continental air (not shown).

graph_2

Comparison of (a) 3-km and (b) 500-m horizontal resolution ARW simulations of maximum radar reflectivity (shaded according to the color bar in dBZ) verifying at 1500 UTC 29 October 2012.

The 500-m simulation is superior to that at 3-km because it shows the fine-scale linear structure of the convective precipitation bands, consistent with the available observations (not shown). The next images show a zoomed-in view of maximum radar reflectivity and 300-m wind speed within the inner-core of Sandy at 1800 UTC 29 October 2012. This zoomed perspective allows for examination of the full detail of the simulation, noting that the resolution of the simulation (7000×7000 grid points) exceeds the resolution of standard computer monitors by a factor of seven. Here we note the utility of ultra-advanced computational capability to represent the full range of scales spanning the storm-scale circulations down to fine-scale turbulent motions and individual cloud and precipitation systems.

graph_3

500-m ARW simulation of (a) maximum radar reflectivity (shaded according to the color bar in dBZ) and (b) 300-m wind speed (shaded according to the color bar in m s−1) verifying at 1800 UTC 29 October 2012.

The model accuracy for predicting such key output fields as rainfall, pressures, wind speeds, and storm track was graphically validated against actual atmospheric measurements from the storm using NCAR’s VAPOR software suite. Given recent advances in accessing and displaying large volume geophysical datasets as exemplified by the VAPOR software, it is now possible to view the full temporal evolution of numerical simulations and predictions of atmospheric and other geophysical systems. Examples of the advanced visualizations of Hurricane Sandy with VAPOR can be found at:

https://www.vapor.ucar.edu/sites/default/files/movies/sandy_SC13_web_0.mp4

The results of this research will be presented at the Supercomputing conference this month in November.  See the conference agenda here:

http://sc13.supercomputing.org/schedule/event_detail.php?evid=pap255

Cutting Edge Forecasting

NOAA has initiated the ten-year Hurricane Forecast Improvement Project (HFIP), which is evaluating a variety of modeling approaches, exploring the feasibility of real-time fine-scale hurricane projections. Its enhanced Hurricane WRF model (HWRF) is already being run in real time at a somewhat smaller scale. In a collaborative effort involving NOAA’s Hurricane Research Division and Environmental Modeling Center, Cray , NCSA, and NCAR, this code is already being run on Blue Waters to conduct performance studies at scale with grid nesting never before possible. Results are already promising that coming years’ hurricane seasons will be able to incorporate much finer detailed real-time forecasts generated by these simulations. The team is also exploring high resolution simulations with the Office of Naval Research ONR using the COAMPS model.

Research Team:

Peter Johnsen is a performance engineer and meteorologist with Cray, Inc.  Peter’s expertise is optimizing environmental applications on HPC systems.

Mark Straka specializes in performance analysis of scientific applications on the Blue Waters system at the National Center for Supercomputing Applications.

Melvyn Shapiro, Alan Norton, and Thomas Galarneau are research meteorologists with the National Center for Atmospheric Research and are studying many weather phenomena, including Hurricane Sandy’s unique nature.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

First All-Petaflops Top500 List Debuts; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafloppers only. The entry point for the new list is 1.022 petaf Read more…

By Tiffany Trader

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its intention to make Arm a full citizen in the processing arch Read more…

By Tiffany Trader

Jack Wells Joins OpenACC; Arm Support Coming

June 17, 2019

Perhaps the most significant ISC19 news for OpenACC wasn’t in its official press release yesterday which touted growing user traction and the notable addition of HPC leader Jack Wells, director of science, Oak Ridge Le Read more…

By John Russell

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

For decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

5 Benefits Artificial Intelligence Brings to HPC

According to findings from Hyperion Research, simulation is primarily responsible for expanding the global HPC market from $2 billion in 1990 to a projected $38 billion in 2022. Read more…

At ISC: DDN Launches EXA5 for AI, Big Data, HPC Workloads

June 17, 2019

DDN, for two decades competing at the headwaters of high performance storage, this morning announced an enterprise-oriented end-to-end high performance storage and data management for AI, big data and HPC acceleration. I Read more…

By Doug Black

First All-Petaflops Top500 List Debuts; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Jack Wells Joins OpenACC; Arm Support Coming

June 17, 2019

Perhaps the most significant ISC19 news for OpenACC wasn’t in its official press release yesterday which touted growing user traction and the notable addition Read more…

By John Russell

At ISC: DDN Launches EXA5 for AI, Big Data, HPC Workloads

June 17, 2019

DDN, for two decades competing at the headwaters of high performance storage, this morning announced an enterprise-oriented end-to-end high performance storage Read more…

By Doug Black

Final Countdown to ISC19: What to See

June 13, 2019

If you're attending the International Supercomputing Conference, taking place in Frankfurt next week (June 16-20), you're either packing, in transit, or are alr Read more…

By Tiffany Trader

The US Global Weather Forecast System Just Got a Major Upgrade

June 13, 2019

The United States’ Global Forecast System (GFS) has received a major upgrade to its modeling capabilities. The new dynamical core that has been added to the G Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

The Spaceborne Computer Returns to Earth, and HPE Eyes an AI-Protected Spaceborne 2

June 10, 2019

After 615 days on the International Space Station (ISS), HPE’s Spaceborne Computer has returned to Earth. The computer touched down onboard the same SpaceX Dr Read more…

By Oliver Peckham

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Announcing four new HPC capabilities in Google Cloud Platform

April 15, 2019

When you’re running compute-bound or memory-bound applications for high performance computing or large, data-dependent machine learning training workloads on Read more…

By Wyatt Gorman, HPC Specialist, Google Cloud; Brad Calder, VP of Engineering, Google Cloud; Bart Sano, VP of Platforms, Google Cloud

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This