Hurricane Force Supercomputing: Petascale Simulations of Sandy

By Peter Johnsen, Mark Straka, Melvyn Shapiro, Alan Norton & Tom Galerneau

November 14, 2013

The devastation incurred by the landfall of Hurricane Sandy on the northeast coast of the United States just over one year ago exemplifies the need for further advances in accuracy and reliability in numerical weather prediction.  High resolution numerical weather simulations carried out on hundreds of thousands of processors on the largest supercomputers are providing these very insights.

The National Center for Atmospheric Research (NCAR) Weather Research and Forecasting (WRF) model has been employed on the largest yet storm prediction model using real data of over 4 billion points to simulate the landfall of Hurricane Sandy. Using an unprecedented 13,680 nodes (437,760 cores) of the Cray XE6 Blue Waters supercomputer at the National Center for Supercomputing Applications  at the University of Illinois, the team of Peter Johnsen from Cray, Inc., Mark Straka from NCSA, and Mel Shapiro, Alan Norton, and Tom Galarneau from NCAR achieved an unprecedented level of performance for any weather model.  The model used approximately 4 billion grid points at an extremely fine resolution of 500 meters.  Forecast data was written and analyzed by the NCAR team members using the NCAR VAPOR visualization suite.

The landfall of Hurricane Sandy along the New Jersey shoreline late on October 30th, 2012 produced a catastrophic storm surge extending from New Jersey to Rhode Island. The research highlighted here demonstrates the capability of the NCSA/Cray Blue Waters supercomputer to conduct a cloud-resolving WRF-ARW simulation of an intense cyclone over a relatively large domain at a very-fine spatial resolution.

The Blue Waters system is a Cray XE/XK hybrid machine composed of 362,240 AMD 6276 “Interlagos” processors and 4224 NVIDIA GK110 Kepler accelerators all connected by the Cray Gemini 3-D (24^3) torus interconnect. It provides sustained performance of 1 petaflop on a range of real-world science and engineering applications. Our motivation was to reduce time to solution as much as was under our control without major source code restructuring. The WRF version 3.3.1 source code was modified from the public distribution chiefly with concerns for reducing the I/O burden per MPI task and limiting the necessary information to a single MPI rank.

Topology Considerations Are Vital

Domain configuration and process layout using MPI rank ordering features of the Cray XE6 job scheduler (ALPS) form a cornerstone in efficiently using the XE6 3D torus interconnect and allowing WRF to scale this successfully.  We used the Cray grid_order utility to generate improved placement of the ranks for the primary communication pattern in the WRF solver, which is nearest neighbor halo exchanges. Reducing the number of neighbors communicating off-node is the primary goal. Using an alternate placement allows us to get 3 communication partners for most MPI ranks on the same node, instead of only 2, as would be with the default placement.  At very high scales, this strategy improves overall WRF performance by 18% or more.

We found the most effective way to run WRF on the AMD Bulldozer core-modules was to exploit WRF’s “hybrid” MPI/OpenMP structure, utilizing 2 OpenMP threads per MPI rank.  This puts 16 MPI ranks on each XE6 node.

The optimized placement we’ve employed also has the benefit of sending smaller east-west direction exchanges off-node and keeping as many larger north-south messages on-node as possible, resulting in 75% fewer bytes being sent over the network. We verified empirically the long-known tactic of decomposing WRF’s domain with many fewer MPI ranks in the X direction than the Y, as this leads to longer vectors on the inner compute loops.

Our simulations yielded an average Tflop count of 32.454 Tflops per second, per simulation time step. Parallel efficiency was still above 60% even on 13,680 XE6 nodes. Over 12 million off-node halo exchange messages totaling 280 GB were processed every WRF time step.

I/O Considerations at Scale

On the Blue Waters system, the Lustre file system was used for all file activity.

Two techniques were used to handle the large I/O requirements for the Sandy simulation –

  1. Parallel NetCDF (PnetCDF), jointly developed by Northwestern University and Argonne National Laboratory, was used where practical.  The MPICH library from Cray has a tuned MPI-IO implementation that aligns parallel I/O with the Lustre file system.  This format is required when post-processing tools are used.
  2. WRF has a multi-file option where each subdomain, or MPI rank, reads and writes unique files.  This was used for very large restart files and some of the pre-processing steps.  The Blue Waters Lustre file system was able to open and read 145,920 restart files in 18 seconds for a 4560 node case.

Additionally, use of WRF’s auxiliary history output options to select only the output fields of greatest interest, thus reducing the volume of output considerably, was of great utility in our work.

graph_1

Scalability of Hurricane Sandy run.  Sustained performance in Tflops/second (y-axis, left) and parallel efficiency over base run on 8,192 cores (y-axis, right) are shown.

Forecast Analysis and Validation

The following figures show a comparison of the maximum radar reflectivity (a surrogate for precipitation) from the simulations at 3-km and 500-m horizontal resolution. In both simulations, a broad region of heavy precipitation is located on the west and southwest side of Sandy, and is organized in a region where warm moist northeasterly flow intersects a northwesterly surge of cold continental air (not shown).

graph_2

Comparison of (a) 3-km and (b) 500-m horizontal resolution ARW simulations of maximum radar reflectivity (shaded according to the color bar in dBZ) verifying at 1500 UTC 29 October 2012.

The 500-m simulation is superior to that at 3-km because it shows the fine-scale linear structure of the convective precipitation bands, consistent with the available observations (not shown). The next images show a zoomed-in view of maximum radar reflectivity and 300-m wind speed within the inner-core of Sandy at 1800 UTC 29 October 2012. This zoomed perspective allows for examination of the full detail of the simulation, noting that the resolution of the simulation (7000×7000 grid points) exceeds the resolution of standard computer monitors by a factor of seven. Here we note the utility of ultra-advanced computational capability to represent the full range of scales spanning the storm-scale circulations down to fine-scale turbulent motions and individual cloud and precipitation systems.

graph_3

500-m ARW simulation of (a) maximum radar reflectivity (shaded according to the color bar in dBZ) and (b) 300-m wind speed (shaded according to the color bar in m s−1) verifying at 1800 UTC 29 October 2012.

The model accuracy for predicting such key output fields as rainfall, pressures, wind speeds, and storm track was graphically validated against actual atmospheric measurements from the storm using NCAR’s VAPOR software suite. Given recent advances in accessing and displaying large volume geophysical datasets as exemplified by the VAPOR software, it is now possible to view the full temporal evolution of numerical simulations and predictions of atmospheric and other geophysical systems. Examples of the advanced visualizations of Hurricane Sandy with VAPOR can be found at:

https://www.vapor.ucar.edu/sites/default/files/movies/sandy_SC13_web_0.mp4

The results of this research will be presented at the Supercomputing conference this month in November.  See the conference agenda here:

http://sc13.supercomputing.org/schedule/event_detail.php?evid=pap255

Cutting Edge Forecasting

NOAA has initiated the ten-year Hurricane Forecast Improvement Project (HFIP), which is evaluating a variety of modeling approaches, exploring the feasibility of real-time fine-scale hurricane projections. Its enhanced Hurricane WRF model (HWRF) is already being run in real time at a somewhat smaller scale. In a collaborative effort involving NOAA’s Hurricane Research Division and Environmental Modeling Center, Cray , NCSA, and NCAR, this code is already being run on Blue Waters to conduct performance studies at scale with grid nesting never before possible. Results are already promising that coming years’ hurricane seasons will be able to incorporate much finer detailed real-time forecasts generated by these simulations. The team is also exploring high resolution simulations with the Office of Naval Research ONR using the COAMPS model.

Research Team:

Peter Johnsen is a performance engineer and meteorologist with Cray, Inc.  Peter’s expertise is optimizing environmental applications on HPC systems.

Mark Straka specializes in performance analysis of scientific applications on the Blue Waters system at the National Center for Supercomputing Applications.

Melvyn Shapiro, Alan Norton, and Thomas Galarneau are research meteorologists with the National Center for Atmospheric Research and are studying many weather phenomena, including Hurricane Sandy’s unique nature.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

ORNL Helps Identify Challenges of Extremely Heterogeneous Architectures

March 21, 2019

Exponential growth in classical computing over the last two decades has produced hardware and software that support lightning-fast processing speeds, but advancements are topping out as computing architectures reach thei Read more…

By Laurie Varma

Interview with 2019 Person to Watch Jim Keller

March 21, 2019

On the heels of Intel's reaffirmation that it will deliver the first U.S. exascale computer in 2021, which will feature the company's new Intel Xe architecture, we bring you our interview with our 2019 Person to Watch Jim Keller, head of the Silicon Engineering Group at Intel. Read more…

By HPCwire Editorial Team

What’s New in HPC Research: TensorFlow, Buddy Compression, Intel Optane & More

March 20, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Insurance: Where’s the Risk?

Insurers are facing extreme competitive challenges in their core businesses. Property and Casualty (P&C) and Life and Health (L&H) firms alike are highly impacted by the ongoing globalization, increasing regulation, and digital transformation of their client bases. Read more…

At GTC: Nvidia Expands Scope of Its AI and Datacenter Ecosystem

March 19, 2019

In the high-stakes race to provide the AI life-cycle solution of choice, three of the biggest horses in the field are IBM, Intel and Nvidia. While the latter is only a fraction of the size of its two bigger rivals, and has been in business for only a fraction of the time, Nvidia continues to impress with an expanding array of new GPU-based hardware, software, robotics, partnerships and... Read more…

By Doug Black

At GTC: Nvidia Expands Scope of Its AI and Datacenter Ecosystem

March 19, 2019

In the high-stakes race to provide the AI life-cycle solution of choice, three of the biggest horses in the field are IBM, Intel and Nvidia. While the latter is only a fraction of the size of its two bigger rivals, and has been in business for only a fraction of the time, Nvidia continues to impress with an expanding array of new GPU-based hardware, software, robotics, partnerships and... Read more…

By Doug Black

Nvidia Debuts Clara AI Toolkit with Pre-Trained Models for Radiology Use

March 19, 2019

AI’s push into healthcare got a boost yesterday with Nvidia’s release of the Clara Deploy AI toolkit which includes 13 pre-trained models for use in radiolo Read more…

By John Russell

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

Quick Take: Trump’s 2020 Budget Spares DoE-funded HPC but Slams NSF and NIH

March 12, 2019

U.S. President Donald Trump’s 2020 budget request, released yesterday, proposes deep cuts in many science programs but seems to spare HPC funding by the Depar Read more…

By John Russell

Nvidia Wins Mellanox Stakes for $6.9 Billion

March 11, 2019

The long-rumored acquisition of Mellanox came to fruition this morning with GPU chipmaker Nvidia’s announcement that it has purchased the high-performance net Read more…

By Doug Black

Optalysys Rolls Commercial Optical Processor

March 7, 2019

Optalysys, Ltd., a U.K. company seeking to advance it optical co-processor technology, moved a step closer this week with the unveiling of what it claims is th Read more…

By George Leopold

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Move Over Lustre & Spectrum Scale – Here Comes BeeGFS?

November 26, 2018

Is BeeGFS – the parallel file system with European roots – on a path to compete with Lustre and Spectrum Scale worldwide in HPC environments? Frank Herold Read more…

By John Russell

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This