Hurricane Force Supercomputing: Petascale Simulations of Sandy

By Peter Johnsen, Mark Straka, Melvyn Shapiro, Alan Norton & Tom Galerneau

November 14, 2013

The devastation incurred by the landfall of Hurricane Sandy on the northeast coast of the United States just over one year ago exemplifies the need for further advances in accuracy and reliability in numerical weather prediction.  High resolution numerical weather simulations carried out on hundreds of thousands of processors on the largest supercomputers are providing these very insights.

The National Center for Atmospheric Research (NCAR) Weather Research and Forecasting (WRF) model has been employed on the largest yet storm prediction model using real data of over 4 billion points to simulate the landfall of Hurricane Sandy. Using an unprecedented 13,680 nodes (437,760 cores) of the Cray XE6 Blue Waters supercomputer at the National Center for Supercomputing Applications  at the University of Illinois, the team of Peter Johnsen from Cray, Inc., Mark Straka from NCSA, and Mel Shapiro, Alan Norton, and Tom Galarneau from NCAR achieved an unprecedented level of performance for any weather model.  The model used approximately 4 billion grid points at an extremely fine resolution of 500 meters.  Forecast data was written and analyzed by the NCAR team members using the NCAR VAPOR visualization suite.

The landfall of Hurricane Sandy along the New Jersey shoreline late on October 30th, 2012 produced a catastrophic storm surge extending from New Jersey to Rhode Island. The research highlighted here demonstrates the capability of the NCSA/Cray Blue Waters supercomputer to conduct a cloud-resolving WRF-ARW simulation of an intense cyclone over a relatively large domain at a very-fine spatial resolution.

The Blue Waters system is a Cray XE/XK hybrid machine composed of 362,240 AMD 6276 “Interlagos” processors and 4224 NVIDIA GK110 Kepler accelerators all connected by the Cray Gemini 3-D (24^3) torus interconnect. It provides sustained performance of 1 petaflop on a range of real-world science and engineering applications. Our motivation was to reduce time to solution as much as was under our control without major source code restructuring. The WRF version 3.3.1 source code was modified from the public distribution chiefly with concerns for reducing the I/O burden per MPI task and limiting the necessary information to a single MPI rank.

Topology Considerations Are Vital

Domain configuration and process layout using MPI rank ordering features of the Cray XE6 job scheduler (ALPS) form a cornerstone in efficiently using the XE6 3D torus interconnect and allowing WRF to scale this successfully.  We used the Cray grid_order utility to generate improved placement of the ranks for the primary communication pattern in the WRF solver, which is nearest neighbor halo exchanges. Reducing the number of neighbors communicating off-node is the primary goal. Using an alternate placement allows us to get 3 communication partners for most MPI ranks on the same node, instead of only 2, as would be with the default placement.  At very high scales, this strategy improves overall WRF performance by 18% or more.

We found the most effective way to run WRF on the AMD Bulldozer core-modules was to exploit WRF’s “hybrid” MPI/OpenMP structure, utilizing 2 OpenMP threads per MPI rank.  This puts 16 MPI ranks on each XE6 node.

The optimized placement we’ve employed also has the benefit of sending smaller east-west direction exchanges off-node and keeping as many larger north-south messages on-node as possible, resulting in 75% fewer bytes being sent over the network. We verified empirically the long-known tactic of decomposing WRF’s domain with many fewer MPI ranks in the X direction than the Y, as this leads to longer vectors on the inner compute loops.

Our simulations yielded an average Tflop count of 32.454 Tflops per second, per simulation time step. Parallel efficiency was still above 60% even on 13,680 XE6 nodes. Over 12 million off-node halo exchange messages totaling 280 GB were processed every WRF time step.

I/O Considerations at Scale

On the Blue Waters system, the Lustre file system was used for all file activity.

Two techniques were used to handle the large I/O requirements for the Sandy simulation –

  1. Parallel NetCDF (PnetCDF), jointly developed by Northwestern University and Argonne National Laboratory, was used where practical.  The MPICH library from Cray has a tuned MPI-IO implementation that aligns parallel I/O with the Lustre file system.  This format is required when post-processing tools are used.
  2. WRF has a multi-file option where each subdomain, or MPI rank, reads and writes unique files.  This was used for very large restart files and some of the pre-processing steps.  The Blue Waters Lustre file system was able to open and read 145,920 restart files in 18 seconds for a 4560 node case.

Additionally, use of WRF’s auxiliary history output options to select only the output fields of greatest interest, thus reducing the volume of output considerably, was of great utility in our work.

graph_1

Scalability of Hurricane Sandy run.  Sustained performance in Tflops/second (y-axis, left) and parallel efficiency over base run on 8,192 cores (y-axis, right) are shown.

Forecast Analysis and Validation

The following figures show a comparison of the maximum radar reflectivity (a surrogate for precipitation) from the simulations at 3-km and 500-m horizontal resolution. In both simulations, a broad region of heavy precipitation is located on the west and southwest side of Sandy, and is organized in a region where warm moist northeasterly flow intersects a northwesterly surge of cold continental air (not shown).

graph_2

Comparison of (a) 3-km and (b) 500-m horizontal resolution ARW simulations of maximum radar reflectivity (shaded according to the color bar in dBZ) verifying at 1500 UTC 29 October 2012.

The 500-m simulation is superior to that at 3-km because it shows the fine-scale linear structure of the convective precipitation bands, consistent with the available observations (not shown). The next images show a zoomed-in view of maximum radar reflectivity and 300-m wind speed within the inner-core of Sandy at 1800 UTC 29 October 2012. This zoomed perspective allows for examination of the full detail of the simulation, noting that the resolution of the simulation (7000×7000 grid points) exceeds the resolution of standard computer monitors by a factor of seven. Here we note the utility of ultra-advanced computational capability to represent the full range of scales spanning the storm-scale circulations down to fine-scale turbulent motions and individual cloud and precipitation systems.

graph_3

500-m ARW simulation of (a) maximum radar reflectivity (shaded according to the color bar in dBZ) and (b) 300-m wind speed (shaded according to the color bar in m s−1) verifying at 1800 UTC 29 October 2012.

The model accuracy for predicting such key output fields as rainfall, pressures, wind speeds, and storm track was graphically validated against actual atmospheric measurements from the storm using NCAR’s VAPOR software suite. Given recent advances in accessing and displaying large volume geophysical datasets as exemplified by the VAPOR software, it is now possible to view the full temporal evolution of numerical simulations and predictions of atmospheric and other geophysical systems. Examples of the advanced visualizations of Hurricane Sandy with VAPOR can be found at:

https://www.vapor.ucar.edu/sites/default/files/movies/sandy_SC13_web_0.mp4

The results of this research will be presented at the Supercomputing conference this month in November.  See the conference agenda here:

http://sc13.supercomputing.org/schedule/event_detail.php?evid=pap255

Cutting Edge Forecasting

NOAA has initiated the ten-year Hurricane Forecast Improvement Project (HFIP), which is evaluating a variety of modeling approaches, exploring the feasibility of real-time fine-scale hurricane projections. Its enhanced Hurricane WRF model (HWRF) is already being run in real time at a somewhat smaller scale. In a collaborative effort involving NOAA’s Hurricane Research Division and Environmental Modeling Center, Cray , NCSA, and NCAR, this code is already being run on Blue Waters to conduct performance studies at scale with grid nesting never before possible. Results are already promising that coming years’ hurricane seasons will be able to incorporate much finer detailed real-time forecasts generated by these simulations. The team is also exploring high resolution simulations with the Office of Naval Research ONR using the COAMPS model.

Research Team:

Peter Johnsen is a performance engineer and meteorologist with Cray, Inc.  Peter’s expertise is optimizing environmental applications on HPC systems.

Mark Straka specializes in performance analysis of scientific applications on the Blue Waters system at the National Center for Supercomputing Applications.

Melvyn Shapiro, Alan Norton, and Thomas Galarneau are research meteorologists with the National Center for Atmospheric Research and are studying many weather phenomena, including Hurricane Sandy’s unique nature.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascale” award), parsed out additional information ab Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid whoops and hollers from the crowd, Thomas Sterling presented t Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out plans to push deeper into climate science and develop more gran Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale companies and their embrace of AI and deep learning – tha Read more…

By Doug Black

HPE Extreme Performance Solutions

Creating a Roadmap for HPC Innovation at ISC 2017

In an era where technological advancements are driving innovation to every sector, and powering major economic and scientific breakthroughs, high performance computing (HPC) is crucial to tackle the challenges of today and tomorrow. Read more…

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network designed to emulate and compete with the human brain. In thi Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big data and artificial intelligence software to its top-of-the-l Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “global” launch event in Austin TX. In many ways it was a fu Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it, analysts and journalists want to report on it. Deep learni Read more…

By Doug Black

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid wh Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out pla Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale Read more…

By Doug Black

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big d Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “g Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it Read more…

By Doug Black

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This