OpenACC Broadens Appeal with GCC Compiler Support

By Nicole Hemsoth

November 14, 2013

As the non-profit standards group behind the push for wider adoption via easier use of accelerators, OpenACC has quite a big job ahead. Although analysts agree that accelerators sit along a comfortable adoption curve, usability, programmability and portability are key concerns, among others.

Over the last couple of years, OpenACC has worked with user groups across academia and industry to understand what is still needed for healthier adoption of accelerators via workshops and meetings, which has produced a number of the core improvements that are available within the 2.0 spec (procedure calls, nested parallelism, more dynamic data management support and more). On top of that, the ecosystem is also rounded out by CAPS, PGI and Cray, in particular, as well as being supported by x86 and ARM vendors (and of course the accelerators from all the major players).

Of course, one of the main questions was whether the OpenACC group would be able to offer a free implementation and whether they would open source OpenACC (not the same thing, as we know). Today the group spoke to those requests by announcing that one of its new members (in addition to Louisiana State University and NOAA as of this week), Mentor Graphics, has developed OpenACC extensions that will be supported in mainstream GCC compilers.

Mentor Graphics’ Nathan Sidwell told us that this came about following their acquisition of Code Sourcery, which has a long history of producing GCC-based toolchains for Linux and embedded systems. Mentor is working on implementing OpenACC 2.0 in the GCC toolchain, which will be rolled out over the next year, making an open source implementation of OpenACC available to all users who have Linux systems. Sidwell said that they are leveraging some of the existing infrastructure in GCC for accelerated computing, but how different implementations will converge is undecided at this point as it will be up to distributors of Linux systems how they configure GCC for their offerings.

As OpenACC President, Duncan Poole, said of this development, it breaks OpenACC out of a niche where users had to make a distinct decision to go their route.  “The addition of an open source platform is critical for the broader range of heterogeneous programming that will be necessary for the next stage of growth and innovation in HPC and as a foundation to drive software development for exascale systems.”

The non-profit wants to move accelerator use for clusters beyond computer science realms and open it to a wider set of users whose background might have little to do with programming for GPUs or other accelerators. To address those users, Poole says there needs to be support for legacy applications (those that are written in Fortran, for example, or by someone who is no longer with an organization or even those that were collaboratively developed). Users with these applications usually need a way of supporting new features but don’t require custom code paths for special features, says Poole, and this is where the benefit of OpenACC can be keenly felt.

OpenACC has been in 1.0 for a couple of years with the 2.0 spec released over the summer. Since then, as mentioned, there are three commercial implementations, all of which are starting to roll out their own 2.0 implementations (Cray with their 8.2 release recently, CAPS with their announcement of full OpenACC in December and PGI in the near term with their 2014 release in January). In addition to offering key features, the most important of which are procedure calls, Michael Wolfe of PGI (recently acquired by NVIDIA) and secretary of OpenACC says they’re using feedback to address a few other issues.

Screen shot 2013-11-14 at 9.48.51 AM

The main goal is to preserve the readability of these programs and ensure cross-platform compatibility. For OpenACC to provide this, the focus is on directives—a familiar programming model that can handle a number of elements that don’t require the end user to have a deep understanding of CUDA or OpenCL. They can then do things like allocate data on the accelerator, transfer data that’s been on the host to the booster, perform a series of operations on the accelerator and then return results back to program with far more transparency than was possible before.

“All the OpenACC vendors have experienced increasing experimentation and adoption of OpenACC on a variety of applications, including weather, computational chemistry, fluid flow simulation, combustion, and many more,” said Wolfe.  “We have been getting very useful feedback from the users to drive improvements to the specification and implementations that will deliver better performance as well as overall enhanced user experience.”

As Wolfe told us, “One of the most important features for C and C++ code would be arrays in C++ classes or C structs or Fortran derived types—these are structured data types that have array members, but right now the spec has no standard way to support that and the implementations are weak in that area—so we’re working hard to make that work, in particular for C++. We undertand that C++ is a large language and has some unique features so we’re working hard with feedback to make sure we support that in a natural and satisfying manner for those many users.”

Wolfe said that without a doubt, the top feedback from their workshops and analysis is not really a surprise—“for C++ you really have to support classes and templated classes and class members that are arrays because that’s how those programs are written. That also appears in Fortran, but not as pervasive as in C++.”

In agreement with these workshops findings is one of the core contributors to OpenACC efforts, Oak Ridge National Lab. With Titan in full production and a whole new set of users porting their codes, the lab has been keen to ensure that OpenACC is stable enough to support the next class of applications being onboarded—not to mention serving as a testbed for what might be viable for exascale-class systems.

As Dr. Oscar Hernandez, Research Staff Scientist at ORNL (and OpenACC Director of Developer Adoption) told us, OpenACC is very important because it allows ORNL to program heterogeneous systems with a single programming model that lets his teams address multiple architectures with different types of memory. “It’s important for us also because it’s a way to maintain portability in our codes and at the same time take advantage of leadership-class systems at ORNL that rely on accelerators. OpenACC offers a solution that works today and is friendly to the programmer–Open source efforts also help us drive and understand more the application needs and to do research and improve and understand what we need to do to build an ecosystem aroud OpenACC in addition we like the fact that it works now and can move fast and meet more app needs as of today.”

The group will have its first booth ever at SC13, which will be manned by various members of the organization. Some schedule highlights below for those interested in this track. We shall see you there…

OpenACCatSC

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Google Launches New Machine Learning Journal

March 22, 2017

On Monday, Google announced plans to launch a new peer review journal and “ecosystem” Read more…

By John Russell

Swiss Researchers Peer Inside Chips with Improved X-Ray Imaging

March 22, 2017

Peering inside semiconductor chips using x-ray imaging isn’t new, but the technique hasn’t been especially good or easy to accomplish. Read more…

By John Russell

LANL Simulation Shows Massive Black Holes Break “Speed Limit”

March 21, 2017

A new computer simulation based on codes developed at Los Alamos National Laboratory is shedding light on how supermassive black holes could have formed in the early universe contrary to most prior models which impose a limit on how fast these massive ‘objects’ can form. Read more…

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

HPE Extreme Performance Solutions

HFT Firms Turn to Co-Location to Gain Competitive Advantage

High-frequency trading (HFT) is a high-speed, high-stakes world where every millisecond matters. Finding ways to execute trades faster than the competition translates directly to greater revenue for firms, brokerages, and exchanges. Read more…

Intel Ships Drives Based on 3-D XPoint Non-volatile Memory

March 20, 2017

Intel Corp. has begun shipping new storage drives based on its 3-D XPoint non-volatile memory technology as it targets data-driven workloads. Read more…

By George Leopold

Researchers Recreate ‘El Reno’ Tornado on Blue Waters Supercomputer

March 16, 2017

The United States experiences more tornadoes than any other country. About 1,200 tornadoes touch down each each year in the U.S. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

Nvidia Debuts HGX-1 for Cloud; Announces Fujitsu AI Deal

March 9, 2017

On Monday Nvidia announced a major deal with Fujitsu to help build an AI supercomputer for RIKEN using 24 DGX-1 servers. Read more…

By John Russell

HPC4Mfg Advances State-of-the-Art for American Manufacturing

March 9, 2017

Last Friday (March 3, 2017), the High Performance Computing for Manufacturing (HPC4Mfg) program held an industry engagement day workshop in San Diego, bringing together members of the US manufacturing community, national laboratories and universities to discuss the role of high-performance computing as an innovation engine for American manufacturing. Read more…

By Tiffany Trader

AMD Expands Exascale Vision at IEEE HPC Symposium

March 7, 2017

With the race towards exascale heating up – for example, the Exascale Computing Program PathForward awards are expected soon – AMD delivered more details of its exascale vision at last month’s 23rd IEEE Symposium on High Performance Computer Architecture. The chipmaker presented an “Exascale Node Architecture (ENA) as the primary building block for exascale machine” including descriptions of component, interconnect, and packaging strategy along with simulation benchmarks to bolster its case. Read more…

By John Russell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Leading Solution Providers

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This