SC13 Research Highlight: Petascale DNS of Turbulent Channel Flow

By Myoungkyu Lee, Nicholas Malaya, and Robert Moser

November 15, 2013

Whether a car on the highway, a plane flying through the air, or a ship in the ocean, all of these transport systems move through fluids. And in nearly all cases, the fluid flowing around these vehicles will be turbulent.

With over 20% of global energy consumption expended on transportation, the large fraction of the energy expended in moving goods and people that is mediated by wall-bounded turbulence is a significant component of the nation’s energy budget. However, despite the energy impact, scientists do not possess a sufficiently detailed understanding of the physics of turbulent flows to permit reliable predictions of the lift or drag of these system.

In order to probe the physics of wall-bounded turbulent flows, a team of scientists at the University of Texas are conducting the largest ever Direct Numerical Simulation (DNS) of wall-bounded turbulence at Ret = 5200. With 242 billion degrees of freedom, this simulation is fifteen times larger than the previously largest channel DNS of Hoyas and Jimenez, conducted in 2006.

In a DNS of turbulence, the equations of fluid motion (the Navier-Stokes equations) are solved, without any modeling, at sufficient resolution to represent all the scales of turbulence. In general, the full three-dimensional data fields of turbulent flow are difficult to obtain experimentally. On the other hand, computer simulations provide exquisitely detailed and highly reliable data, which have driven a number of discoveries regarding the nature of wall-bounded turbulence.

However, the use of DNS to study high speed flows has been hindered by the significant computational expense of the simulations. Resolving all the essential scales of turbulence introduces enormous computational and memory requirements, requiring DNS to be performed on the largest supercomputers. For this reason, DNS is a challenging HPC problem, and is a commonly used application to evaluate the performance of Top-500 systems. Due to the great expense of running a DNS, improving efficiencies in computation allows the simulation of more realistic scenarios (higher Reynolds numbers and larger domains) than would otherwise be possible.

Vortex_structure
Vortex visualization of turbulent flow

M.K.(Myoungkyu) Lee, the lead developer of the new DNS code used in the simulations, will present the results of numerous software optimizations during the Extreme-Scale Applications Session at SC13, on Tuesday, Nov 19th, 1:30PM – 2:00PM. The presentation will detail scaling results across a variety of Top-500 platforms, such as the Texas Advanced Computing Center’s Lonestar and Stampede, the National Center for Supercomputing Applications’ Blue Waters, and Argonne Leadership Computing Facility’s Blue Gene/Q Mira, where the full scientific simulation was conducted.

The results demonstrate that performance is highly dependent on characteristics of the communication network and memory bandwidth, rather than single core performance. On Blue Gene/Q, for instance, the code exhibits approximately 80% strong scaling parallel efficiency at 786K cores relative to performance on 65K cores. The largest benchmark case uses 2.3 trillion grid points and the corresponding memory requirement is 130 Terabytes.

The code was developed using Fourier spectral methods, which are typically preferred for turbulence DNS because of the superior resolution properties, despite the resulting algorithmic need for expensive communication. Optimization was performed to address several major issues: efficiency of banded matrix linear algebra, cache reuse and memory access, threading efficiency and communication for the global data transposes.

A special linear algebra solver was developed, based on a custom matrix data structure in which non-zero elements are moved to otherwise empty elements, reducing the memory requirement by half, which is important for cache management. In addition, it is found that compilers inefficiently optimized the low-level operations on matrix elements for the LU decomposition. As a result, loops were unrolled by hand to improve reuse of data in cache.

Streamwise velocity (sides) and wall-shear stress (top) of turbulent flow between two parallel plates
Streamwise velocity (sides) and wall-shear stress (top) of turbulent flow between two parallel plates

FFTs, on-node data reordering and the time advance were all threaded using OpenMP to enhance single-node performance. These were very effective, with the code demonstrating nearly perfect OpenMP scalability (99%).

The talk will also discuss how replacing the existing library for 3D global Fast Fourier Transforms (P3DFFT) with a new library developed using the FFTW 3.3-MPI library and lead to substantially improved communication performance.

The full scientific simulation used 300 million core hours on ALCF’s BG/Q Mira from the Department of Energy Early Science Program and the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) 2013 Program. Each restart file generated by the simulation is 1.8 TB in size, with approximately eighty such files archived for long term postprocessing and investigation. Postprocessing this large an amount of data is also a supercomputing challenge.

Presentation Information

Title : Petascale Direct Numerical Simulation of Turbulent Channel Flow on up to 786K Cores

Location : Room 201/203

Session : Extreme-Scale Applications

Time :  Tuesday, Nov 19th, 1:30PM – 2:00PM

Presenter : M.K.(Myoungkyu) Lee

SC13 Scheduler : http://sc13.supercomputing.org/schedule/event_detail.php?evid=pap689

About

M.K. (Myoungkyu) Lee is a Ph.D student in Department of Mechanical Engineering at the University of Texas at Austin.
mk@ices.utexas.edu

Nicholas Malaya is a researcher in the Center for Predictive Engineering and Computational Sciences (PECOS) within the Institute for Computational Engineering and Sciences (ICES) at The University of Texas at Austin.
nick@ices.utexas.edu

Robert D. Moser holds the W. A. “Tex” Moncrief Jr. Chair in Computational Engineering and Sciences and is professor of mechanical engineering in thermal fluid systems. He serves as the director of the ICES Center for Predictive Engineering and Computational Sciences (PECOS) and deputy director of the Institute for Computational Engineering and Sciences(ICES).
rmoser@ices.utexas.edu

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

PEARC21 Panel Reviews Eight New NSF-Funded HPC Systems Debuting in 2021

July 23, 2021

Over the past few years, the NSF has funded a number of HPC systems to further supply the open research community with computational resources to meet that community’s changing and expanding needs. A review of these systems at the PEARC21 conference (July 19-22) highlighted... Read more…

Chameleon’s HPC Testbed Sharpens Its Edge, Presses ‘Replay’

July 22, 2021

“One way of saying what I do for a living is to say that I develop scientific instruments,” said Kate Keahey, a senior fellow at the University of Chicago and a computer scientist at Argonne National Laboratory, as s Read more…

PEARC21 Plenary Session: AI for Innovative Social Work

July 21, 2021

AI analysis of social media poses a double-edged sword for social work and addressing the needs of at-risk youths, said Desmond Upton Patton, senior associate dean, Innovation and Academic Affairs, Columbia University. S Read more…

Summer Reading: “High-Performance Computing Is at an Inflection Point”

July 21, 2021

At last month’s 11th International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies (HEART), a group of researchers led by Martin Schulz of the Leibniz Supercomputing Center (Munich) presented a “position paper” in which they argue HPC architectural landscape... Read more…

AWS Solution Channel

Accelerate innovation in healthcare and life sciences with AWS HPC

With Amazon Web Services, researchers can access purpose-built HPC tools and services along with scientific and technical expertise to accelerate the pace of discovery. Whether you are sequencing the human genome, using AI/ML for disease detection or running molecular dynamics simulations to develop lifesaving drugs, AWS has the infrastructure you need to run your HPC workloads. Read more…

PEARC21 Panel: Wafer-Scale-Engine Technology Accelerates Machine Learning, HPC

July 21, 2021

Early use of Cerebras’ CS-1 server and wafer-scale engine (WSE) has demonstrated promising acceleration of machine-learning algorithms, according to participants in the Scientific Research Enabled by CS-1 Systems panel Read more…

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

Chameleon’s HPC Testbed Sharpens Its Edge, Presses ‘Replay’

July 22, 2021

“One way of saying what I do for a living is to say that I develop scientific instruments,” said Kate Keahey, a senior fellow at the University of Chicago a Read more…

Summer Reading: “High-Performance Computing Is at an Inflection Point”

July 21, 2021

At last month’s 11th International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies (HEART), a group of researchers led by Martin Schulz of the Leibniz Supercomputing Center (Munich) presented a “position paper” in which they argue HPC architectural landscape... Read more…

PEARC21 Panel: Wafer-Scale-Engine Technology Accelerates Machine Learning, HPC

July 21, 2021

Early use of Cerebras’ CS-1 server and wafer-scale engine (WSE) has demonstrated promising acceleration of machine-learning algorithms, according to participa Read more…

15 Years Later, the Green500 Continues Its Push for Energy Efficiency as a First-Order Concern in HPC

July 15, 2021

The Green500 list, which ranks the most energy-efficient supercomputers in the world, has virtually always faced an uphill battle. As Wu Feng – custodian of the Green500 list and an associate professor at Virginia Tech – tells it, “noone" cared about energy efficiency in the early 2000s, when the seeds... Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

ExaWind Prepares for New Architectures, Bigger Simulations

July 10, 2021

The ExaWind project describes itself in terms of terms like wake formation, turbine-turbine interaction and blade-boundary-layer dynamics, but the pitch to the Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

Leading Solution Providers

Contributors

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

Q&A with Jim Keller, CTO of Tenstorrent, and an HPCwire Person to Watch in 2021

April 22, 2021

As part of our HPCwire Person to Watch series, we are happy to present our interview with Jim Keller, president and chief technology officer of Tenstorrent. One of the top chip architects of our time, Keller has had an impactful career. Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Senate Debate on Bill to Remake NSF – the Endless Frontier Act – Begins

May 18, 2021

The U.S. Senate today opened floor debate on the Endless Frontier Act which seeks to remake and expand the National Science Foundation by creating a technology Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire