SC13 Research Highlight: Petascale DNS of Turbulent Channel Flow

By Myoungkyu Lee, Nicholas Malaya, and Robert Moser

November 15, 2013

Whether a car on the highway, a plane flying through the air, or a ship in the ocean, all of these transport systems move through fluids. And in nearly all cases, the fluid flowing around these vehicles will be turbulent.

With over 20% of global energy consumption expended on transportation, the large fraction of the energy expended in moving goods and people that is mediated by wall-bounded turbulence is a significant component of the nation’s energy budget. However, despite the energy impact, scientists do not possess a sufficiently detailed understanding of the physics of turbulent flows to permit reliable predictions of the lift or drag of these system.

In order to probe the physics of wall-bounded turbulent flows, a team of scientists at the University of Texas are conducting the largest ever Direct Numerical Simulation (DNS) of wall-bounded turbulence at Ret = 5200. With 242 billion degrees of freedom, this simulation is fifteen times larger than the previously largest channel DNS of Hoyas and Jimenez, conducted in 2006.

In a DNS of turbulence, the equations of fluid motion (the Navier-Stokes equations) are solved, without any modeling, at sufficient resolution to represent all the scales of turbulence. In general, the full three-dimensional data fields of turbulent flow are difficult to obtain experimentally. On the other hand, computer simulations provide exquisitely detailed and highly reliable data, which have driven a number of discoveries regarding the nature of wall-bounded turbulence.

However, the use of DNS to study high speed flows has been hindered by the significant computational expense of the simulations. Resolving all the essential scales of turbulence introduces enormous computational and memory requirements, requiring DNS to be performed on the largest supercomputers. For this reason, DNS is a challenging HPC problem, and is a commonly used application to evaluate the performance of Top-500 systems. Due to the great expense of running a DNS, improving efficiencies in computation allows the simulation of more realistic scenarios (higher Reynolds numbers and larger domains) than would otherwise be possible.

Vortex_structure
Vortex visualization of turbulent flow

M.K.(Myoungkyu) Lee, the lead developer of the new DNS code used in the simulations, will present the results of numerous software optimizations during the Extreme-Scale Applications Session at SC13, on Tuesday, Nov 19th, 1:30PM – 2:00PM. The presentation will detail scaling results across a variety of Top-500 platforms, such as the Texas Advanced Computing Center’s Lonestar and Stampede, the National Center for Supercomputing Applications’ Blue Waters, and Argonne Leadership Computing Facility’s Blue Gene/Q Mira, where the full scientific simulation was conducted.

The results demonstrate that performance is highly dependent on characteristics of the communication network and memory bandwidth, rather than single core performance. On Blue Gene/Q, for instance, the code exhibits approximately 80% strong scaling parallel efficiency at 786K cores relative to performance on 65K cores. The largest benchmark case uses 2.3 trillion grid points and the corresponding memory requirement is 130 Terabytes.

The code was developed using Fourier spectral methods, which are typically preferred for turbulence DNS because of the superior resolution properties, despite the resulting algorithmic need for expensive communication. Optimization was performed to address several major issues: efficiency of banded matrix linear algebra, cache reuse and memory access, threading efficiency and communication for the global data transposes.

A special linear algebra solver was developed, based on a custom matrix data structure in which non-zero elements are moved to otherwise empty elements, reducing the memory requirement by half, which is important for cache management. In addition, it is found that compilers inefficiently optimized the low-level operations on matrix elements for the LU decomposition. As a result, loops were unrolled by hand to improve reuse of data in cache.

Streamwise velocity (sides) and wall-shear stress (top) of turbulent flow between two parallel plates
Streamwise velocity (sides) and wall-shear stress (top) of turbulent flow between two parallel plates

FFTs, on-node data reordering and the time advance were all threaded using OpenMP to enhance single-node performance. These were very effective, with the code demonstrating nearly perfect OpenMP scalability (99%).

The talk will also discuss how replacing the existing library for 3D global Fast Fourier Transforms (P3DFFT) with a new library developed using the FFTW 3.3-MPI library and lead to substantially improved communication performance.

The full scientific simulation used 300 million core hours on ALCF’s BG/Q Mira from the Department of Energy Early Science Program and the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) 2013 Program. Each restart file generated by the simulation is 1.8 TB in size, with approximately eighty such files archived for long term postprocessing and investigation. Postprocessing this large an amount of data is also a supercomputing challenge.

Presentation Information

Title : Petascale Direct Numerical Simulation of Turbulent Channel Flow on up to 786K Cores

Location : Room 201/203

Session : Extreme-Scale Applications

Time :  Tuesday, Nov 19th, 1:30PM – 2:00PM

Presenter : M.K.(Myoungkyu) Lee

SC13 Scheduler : http://sc13.supercomputing.org/schedule/event_detail.php?evid=pap689

About

M.K. (Myoungkyu) Lee is a Ph.D student in Department of Mechanical Engineering at the University of Texas at Austin.
mk@ices.utexas.edu

Nicholas Malaya is a researcher in the Center for Predictive Engineering and Computational Sciences (PECOS) within the Institute for Computational Engineering and Sciences (ICES) at The University of Texas at Austin.
nick@ices.utexas.edu

Robert D. Moser holds the W. A. “Tex” Moncrief Jr. Chair in Computational Engineering and Sciences and is professor of mechanical engineering in thermal fluid systems. He serves as the director of the ICES Center for Predictive Engineering and Computational Sciences (PECOS) and deputy director of the Institute for Computational Engineering and Sciences(ICES).
rmoser@ices.utexas.edu

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Ohio Supercomputing Center Dedicates ‘Owens’ Cluster

March 29, 2017

In a dedication ceremony held earlier today (March 29), officials from Ohio Supercomputing Center (OSC) along with state representatives gathered to celebrate the launch of OSC’s newest cluster: Read more…

By Tiffany Trader

EU Ratchets up the Race to Exascale Computing

March 29, 2017

The race to expand HPC infrastructure, including exascale machines, to advance national and regional interests ratcheted up a notch yesterday with announcement that seven European countries – Read more…

By John Russell

Data-Hungry Algorithms and the Thirst for AI

March 29, 2017

At Tabor Communications’ Leverage Big Data + EnterpriseHPC Summit in Florida last week, esteemed HPC professional Jay Boisseau, chief HPC technology strategist at Dell EMC, engaged the audience with his presentation, “Big Computing, Big Data, Big Trends, Big Results.” Read more…

By Tiffany Trader

Bill Gropp – Pursuing the Next Big Thing at NCSA

March 28, 2017

About eight months ago Bill Gropp was elevated to acting director of the National Center for Supercomputing Applications (NCSA). Read more…

By John Russell

HPE Extreme Performance Solutions

Leveraging the Power of Big Data to Improve Customer Satisfaction & Brand Loyalty

In the dynamic world of retail, retailers must find ways to recognize and effectively respond to shopping behaviors, patterns, and trends in order to succeed. Read more…

UK to Launch Six Major HPC Centers

March 27, 2017

Six high performance computing centers will be formally launched in the U.K. later this week intended to provide wider access to HPC resources to U.K. Read more…

By John Russell

AI in the News: Rao in at Intel, Ng out at Baidu, Nvidia on at Tencent Cloud

March 26, 2017

Just as AI has become the leitmotif of the advanced scale computing market, infusing much of the conversation about HPC in commercial and industrial spheres, it also is impacting high-level management changes in the industry. Read more…

By Doug Black

Scalable Informatics Ceases Operations

March 23, 2017

On the same day we reported on the uncertain future for HPC compiler company PathScale, we are sad to learn that another HPC vendor, Scalable Informatics, is closing its doors. Read more…

By Tiffany Trader

‘Strategies in Biomedical Data Science’ Advances IT-Research Synergies

March 23, 2017

“Strategies in Biomedical Data Science: Driving Force for Innovation” by Jay A. Etchings is both an introductory text and a field guide for anyone working with biomedical data. Read more…

By Tiffany Trader

Data-Hungry Algorithms and the Thirst for AI

March 29, 2017

At Tabor Communications’ Leverage Big Data + EnterpriseHPC Summit in Florida last week, esteemed HPC professional Jay Boisseau, chief HPC technology strategist at Dell EMC, engaged the audience with his presentation, “Big Computing, Big Data, Big Trends, Big Results.” Read more…

By Tiffany Trader

Bill Gropp – Pursuing the Next Big Thing at NCSA

March 28, 2017

About eight months ago Bill Gropp was elevated to acting director of the National Center for Supercomputing Applications (NCSA). Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Leading Solution Providers

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This