SC13 Research Highlight: Petascale DNS of Turbulent Channel Flow

By Myoungkyu Lee, Nicholas Malaya, and Robert Moser

November 15, 2013

Whether a car on the highway, a plane flying through the air, or a ship in the ocean, all of these transport systems move through fluids. And in nearly all cases, the fluid flowing around these vehicles will be turbulent.

With over 20% of global energy consumption expended on transportation, the large fraction of the energy expended in moving goods and people that is mediated by wall-bounded turbulence is a significant component of the nation’s energy budget. However, despite the energy impact, scientists do not possess a sufficiently detailed understanding of the physics of turbulent flows to permit reliable predictions of the lift or drag of these system.

In order to probe the physics of wall-bounded turbulent flows, a team of scientists at the University of Texas are conducting the largest ever Direct Numerical Simulation (DNS) of wall-bounded turbulence at Ret = 5200. With 242 billion degrees of freedom, this simulation is fifteen times larger than the previously largest channel DNS of Hoyas and Jimenez, conducted in 2006.

In a DNS of turbulence, the equations of fluid motion (the Navier-Stokes equations) are solved, without any modeling, at sufficient resolution to represent all the scales of turbulence. In general, the full three-dimensional data fields of turbulent flow are difficult to obtain experimentally. On the other hand, computer simulations provide exquisitely detailed and highly reliable data, which have driven a number of discoveries regarding the nature of wall-bounded turbulence.

However, the use of DNS to study high speed flows has been hindered by the significant computational expense of the simulations. Resolving all the essential scales of turbulence introduces enormous computational and memory requirements, requiring DNS to be performed on the largest supercomputers. For this reason, DNS is a challenging HPC problem, and is a commonly used application to evaluate the performance of Top-500 systems. Due to the great expense of running a DNS, improving efficiencies in computation allows the simulation of more realistic scenarios (higher Reynolds numbers and larger domains) than would otherwise be possible.

Vortex_structure
Vortex visualization of turbulent flow

M.K.(Myoungkyu) Lee, the lead developer of the new DNS code used in the simulations, will present the results of numerous software optimizations during the Extreme-Scale Applications Session at SC13, on Tuesday, Nov 19th, 1:30PM – 2:00PM. The presentation will detail scaling results across a variety of Top-500 platforms, such as the Texas Advanced Computing Center’s Lonestar and Stampede, the National Center for Supercomputing Applications’ Blue Waters, and Argonne Leadership Computing Facility’s Blue Gene/Q Mira, where the full scientific simulation was conducted.

The results demonstrate that performance is highly dependent on characteristics of the communication network and memory bandwidth, rather than single core performance. On Blue Gene/Q, for instance, the code exhibits approximately 80% strong scaling parallel efficiency at 786K cores relative to performance on 65K cores. The largest benchmark case uses 2.3 trillion grid points and the corresponding memory requirement is 130 Terabytes.

The code was developed using Fourier spectral methods, which are typically preferred for turbulence DNS because of the superior resolution properties, despite the resulting algorithmic need for expensive communication. Optimization was performed to address several major issues: efficiency of banded matrix linear algebra, cache reuse and memory access, threading efficiency and communication for the global data transposes.

A special linear algebra solver was developed, based on a custom matrix data structure in which non-zero elements are moved to otherwise empty elements, reducing the memory requirement by half, which is important for cache management. In addition, it is found that compilers inefficiently optimized the low-level operations on matrix elements for the LU decomposition. As a result, loops were unrolled by hand to improve reuse of data in cache.

Streamwise velocity (sides) and wall-shear stress (top) of turbulent flow between two parallel plates
Streamwise velocity (sides) and wall-shear stress (top) of turbulent flow between two parallel plates

FFTs, on-node data reordering and the time advance were all threaded using OpenMP to enhance single-node performance. These were very effective, with the code demonstrating nearly perfect OpenMP scalability (99%).

The talk will also discuss how replacing the existing library for 3D global Fast Fourier Transforms (P3DFFT) with a new library developed using the FFTW 3.3-MPI library and lead to substantially improved communication performance.

The full scientific simulation used 300 million core hours on ALCF’s BG/Q Mira from the Department of Energy Early Science Program and the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) 2013 Program. Each restart file generated by the simulation is 1.8 TB in size, with approximately eighty such files archived for long term postprocessing and investigation. Postprocessing this large an amount of data is also a supercomputing challenge.

Presentation Information

Title : Petascale Direct Numerical Simulation of Turbulent Channel Flow on up to 786K Cores

Location : Room 201/203

Session : Extreme-Scale Applications

Time :  Tuesday, Nov 19th, 1:30PM – 2:00PM

Presenter : M.K.(Myoungkyu) Lee

SC13 Scheduler : http://sc13.supercomputing.org/schedule/event_detail.php?evid=pap689

About

M.K. (Myoungkyu) Lee is a Ph.D student in Department of Mechanical Engineering at the University of Texas at Austin.
[email protected]

Nicholas Malaya is a researcher in the Center for Predictive Engineering and Computational Sciences (PECOS) within the Institute for Computational Engineering and Sciences (ICES) at The University of Texas at Austin.
[email protected]

Robert D. Moser holds the W. A. “Tex” Moncrief Jr. Chair in Computational Engineering and Sciences and is professor of mechanical engineering in thermal fluid systems. He serves as the director of the ICES Center for Predictive Engineering and Computational Sciences (PECOS) and deputy director of the Institute for Computational Engineering and Sciences(ICES).
[email protected]

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's latest weapon in the AI battle with GPU maker Nvidia and clou Read more…

ISC 2024 Student Cluster Competition

May 16, 2024

The 2024 ISC 2024 competition welcomed 19 virtual (remote) and eight in-person teams. The in-person teams participated in the conference venue and, while the virtual teams competed using the Bridges-2 supercomputers at t Read more…

Grace Hopper Gets Busy with Science 

May 16, 2024

Nvidia’s new Grace Hopper Superchip (GH200) processor has landed in nine new worldwide systems. The GH200 is a recently announced chip from Nvidia that eliminates the PCI bus from the CPU/GPU communications pathway.  Read more…

Europe’s Race towards Quantum-HPC Integration and Quantum Advantage

May 16, 2024

What an interesting panel, Quantum Advantage — Where are We and What is Needed? While the panelists looked slightly weary — their’s was, after all, one of the last panels at ISC 2024 — the discussion was fascinat Read more…

The Future of AI in Science

May 15, 2024

AI is one of the most transformative and valuable scientific tools ever developed. By harnessing vast amounts of data and computational power, AI systems can uncover patterns, generate insights, and make predictions that Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top500 list of the fastest supercomputers in the world. At s Read more…

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's l Read more…

Europe’s Race towards Quantum-HPC Integration and Quantum Advantage

May 16, 2024

What an interesting panel, Quantum Advantage — Where are We and What is Needed? While the panelists looked slightly weary — their’s was, after all, one of Read more…

The Future of AI in Science

May 15, 2024

AI is one of the most transformative and valuable scientific tools ever developed. By harnessing vast amounts of data and computational power, AI systems can un Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

ISC 2024 Keynote: High-precision Computing Will Be a Foundation for AI Models

May 15, 2024

Some scientific computing applications cannot sacrifice accuracy and will always require high-precision computing. Therefore, conventional high-performance c Read more…

Shutterstock 493860193

Linux Foundation Announces the Launch of the High-Performance Software Foundation

May 14, 2024

The Linux Foundation, the nonprofit organization enabling mass innovation through open source, is excited to announce the launch of the High-Performance Softw Read more…

ISC 2024: Hyperion Research Predicts HPC Market Rebound after Flat 2023

May 13, 2024

First, the top line: the overall HPC market was flat in 2023 at roughly $37 billion, bogged down by supply chain issues and slowed acceptance of some larger sys Read more…

Top 500: Aurora Breaks into Exascale, but Can’t Get to the Frontier of HPC

May 13, 2024

The 63rd installment of the TOP500 list is available today in coordination with the kickoff of ISC 2024 in Hamburg, Germany. Once again, the Frontier system at Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

Leading Solution Providers

Contributors

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have b Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire