SC13 Research Highlight: Petascale DNS of Turbulent Channel Flow

By Myoungkyu Lee, Nicholas Malaya, and Robert Moser

November 15, 2013

Whether a car on the highway, a plane flying through the air, or a ship in the ocean, all of these transport systems move through fluids. And in nearly all cases, the fluid flowing around these vehicles will be turbulent.

With over 20% of global energy consumption expended on transportation, the large fraction of the energy expended in moving goods and people that is mediated by wall-bounded turbulence is a significant component of the nation’s energy budget. However, despite the energy impact, scientists do not possess a sufficiently detailed understanding of the physics of turbulent flows to permit reliable predictions of the lift or drag of these system.

In order to probe the physics of wall-bounded turbulent flows, a team of scientists at the University of Texas are conducting the largest ever Direct Numerical Simulation (DNS) of wall-bounded turbulence at Ret = 5200. With 242 billion degrees of freedom, this simulation is fifteen times larger than the previously largest channel DNS of Hoyas and Jimenez, conducted in 2006.

In a DNS of turbulence, the equations of fluid motion (the Navier-Stokes equations) are solved, without any modeling, at sufficient resolution to represent all the scales of turbulence. In general, the full three-dimensional data fields of turbulent flow are difficult to obtain experimentally. On the other hand, computer simulations provide exquisitely detailed and highly reliable data, which have driven a number of discoveries regarding the nature of wall-bounded turbulence.

However, the use of DNS to study high speed flows has been hindered by the significant computational expense of the simulations. Resolving all the essential scales of turbulence introduces enormous computational and memory requirements, requiring DNS to be performed on the largest supercomputers. For this reason, DNS is a challenging HPC problem, and is a commonly used application to evaluate the performance of Top-500 systems. Due to the great expense of running a DNS, improving efficiencies in computation allows the simulation of more realistic scenarios (higher Reynolds numbers and larger domains) than would otherwise be possible.

Vortex_structure
Vortex visualization of turbulent flow

M.K.(Myoungkyu) Lee, the lead developer of the new DNS code used in the simulations, will present the results of numerous software optimizations during the Extreme-Scale Applications Session at SC13, on Tuesday, Nov 19th, 1:30PM – 2:00PM. The presentation will detail scaling results across a variety of Top-500 platforms, such as the Texas Advanced Computing Center’s Lonestar and Stampede, the National Center for Supercomputing Applications’ Blue Waters, and Argonne Leadership Computing Facility’s Blue Gene/Q Mira, where the full scientific simulation was conducted.

The results demonstrate that performance is highly dependent on characteristics of the communication network and memory bandwidth, rather than single core performance. On Blue Gene/Q, for instance, the code exhibits approximately 80% strong scaling parallel efficiency at 786K cores relative to performance on 65K cores. The largest benchmark case uses 2.3 trillion grid points and the corresponding memory requirement is 130 Terabytes.

The code was developed using Fourier spectral methods, which are typically preferred for turbulence DNS because of the superior resolution properties, despite the resulting algorithmic need for expensive communication. Optimization was performed to address several major issues: efficiency of banded matrix linear algebra, cache reuse and memory access, threading efficiency and communication for the global data transposes.

A special linear algebra solver was developed, based on a custom matrix data structure in which non-zero elements are moved to otherwise empty elements, reducing the memory requirement by half, which is important for cache management. In addition, it is found that compilers inefficiently optimized the low-level operations on matrix elements for the LU decomposition. As a result, loops were unrolled by hand to improve reuse of data in cache.

Streamwise velocity (sides) and wall-shear stress (top) of turbulent flow between two parallel plates
Streamwise velocity (sides) and wall-shear stress (top) of turbulent flow between two parallel plates

FFTs, on-node data reordering and the time advance were all threaded using OpenMP to enhance single-node performance. These were very effective, with the code demonstrating nearly perfect OpenMP scalability (99%).

The talk will also discuss how replacing the existing library for 3D global Fast Fourier Transforms (P3DFFT) with a new library developed using the FFTW 3.3-MPI library and lead to substantially improved communication performance.

The full scientific simulation used 300 million core hours on ALCF’s BG/Q Mira from the Department of Energy Early Science Program and the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) 2013 Program. Each restart file generated by the simulation is 1.8 TB in size, with approximately eighty such files archived for long term postprocessing and investigation. Postprocessing this large an amount of data is also a supercomputing challenge.

Presentation Information

Title : Petascale Direct Numerical Simulation of Turbulent Channel Flow on up to 786K Cores

Location : Room 201/203

Session : Extreme-Scale Applications

Time :  Tuesday, Nov 19th, 1:30PM – 2:00PM

Presenter : M.K.(Myoungkyu) Lee

SC13 Scheduler : http://sc13.supercomputing.org/schedule/event_detail.php?evid=pap689

About

M.K. (Myoungkyu) Lee is a Ph.D student in Department of Mechanical Engineering at the University of Texas at Austin.
[email protected]

Nicholas Malaya is a researcher in the Center for Predictive Engineering and Computational Sciences (PECOS) within the Institute for Computational Engineering and Sciences (ICES) at The University of Texas at Austin.
[email protected]

Robert D. Moser holds the W. A. “Tex” Moncrief Jr. Chair in Computational Engineering and Sciences and is professor of mechanical engineering in thermal fluid systems. He serves as the director of the ICES Center for Predictive Engineering and Computational Sciences (PECOS) and deputy director of the Institute for Computational Engineering and Sciences(ICES).
[email protected]

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Is Data Science the Fourth Pillar of the Scientific Method?

April 18, 2019

Nvidia CEO Jensen Huang revived a decade-old debate last month when he said that modern data science (AI plus HPC) has become the fourth pillar of the scientific method. While some disagree with the notion that statistic Read more…

By Alex Woodie

At ASF 2019: The Virtuous Circle of Big Data, AI and HPC

April 18, 2019

We've entered a new phase in IT -- in the world, really -- where the combination of big data, artificial intelligence, and high performance computing is pushing the bounds of what's possible in business and science, in w Read more…

By Alex Woodie with Doug Black and Tiffany Trader

Google Open Sources TensorFlow Version of MorphNet DL Tool

April 18, 2019

Designing optimum deep neural networks remains a non-trivial exercise. “Given the large search space of possible architectures, designing a network from scratch for your specific application can be prohibitively expens Read more…

By John Russell

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Bridging HPC and Cloud Native Development with Kubernetes

The HPC community has historically developed its own specialized software stack including schedulers, filesystems, developer tools, container technologies tuned for performance and large-scale on-premises deployments. Read more…

Interview with 2019 Person to Watch Michela Taufer

April 18, 2019

Today, as part of our ongoing HPCwire People to Watch focus series, we are highlighting our interview with 2019 Person to Watch Michela Taufer. Michela -- the General Chair of SC19 -- is an ACM Distinguished Scientist. Read more…

By HPCwire Editorial Team

At ASF 2019: The Virtuous Circle of Big Data, AI and HPC

April 18, 2019

We've entered a new phase in IT -- in the world, really -- where the combination of big data, artificial intelligence, and high performance computing is pushing Read more…

By Alex Woodie with Doug Black and Tiffany Trader

Interview with 2019 Person to Watch Michela Taufer

April 18, 2019

Today, as part of our ongoing HPCwire People to Watch focus series, we are highlighting our interview with 2019 Person to Watch Michela Taufer. Michela -- the Read more…

By HPCwire Editorial Team

Intel Gold U-Series SKUs Reveal Single Socket Intentions

April 18, 2019

Intel plans to jump into the single socket market with a portion of its just announced Cascade Lake microprocessor line according to one media report. This isn Read more…

By John Russell

BSC Researchers Shrink Floating Point Formats to Accelerate Deep Neural Network Training

April 15, 2019

Sometimes calculating solutions as precisely as a computer can wastes more CPU resources than is necessary. A case in point is with deep learning. In early stag Read more…

By Ken Strandberg

Intel Extends FPGA Ecosystem with 10nm Agilex

April 11, 2019

The insatiable appetite for higher throughput and lower latency – particularly where edge analytics and AI, network functions, or for a range of datacenter ac Read more…

By Doug Black

Nvidia Doubles Down on Medical AI

April 9, 2019

Nvidia is collaborating with medical groups to push GPU-powered AI tools into clinical settings, including radiology and drug discovery. The GPU leader said Monday it will collaborate with the American College of Radiology (ACR) to provide clinicians with its Clara AI tool kit. The partnership would allow radiologists to leverage AI techniques for diagnostic imaging using their own clinical data. Read more…

By George Leopold

Digging into MLPerf Benchmark Suite to Inform AI Infrastructure Decisions

April 9, 2019

With machine learning and deep learning storming into the datacenter, the new challenge is optimizing infrastructure choices to support diverse ML and DL workfl Read more…

By John Russell

AI and Enterprise Datacenters Boost HPC Server Revenues Past Expectations – Hyperion

April 9, 2019

Building on the big year of 2017 and spurred in part by the convergence of AI and HPC, global revenue for high performance servers jumped 15.6 percent last year Read more…

By Doug Black

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Microsoft to Buy Mellanox?

December 20, 2018

Networking equipment powerhouse Mellanox could be an acquisition target by Microsoft, according to a published report in an Israeli financial publication. Microsoft has reportedly gone so far as to engage Goldman Sachs to handle negotiations with Mellanox. Read more…

By Doug Black

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This