SC13 Research Highlight: Petascale DNS of Turbulent Channel Flow

By Myoungkyu Lee, Nicholas Malaya, and Robert Moser

November 15, 2013

Whether a car on the highway, a plane flying through the air, or a ship in the ocean, all of these transport systems move through fluids. And in nearly all cases, the fluid flowing around these vehicles will be turbulent.

With over 20% of global energy consumption expended on transportation, the large fraction of the energy expended in moving goods and people that is mediated by wall-bounded turbulence is a significant component of the nation’s energy budget. However, despite the energy impact, scientists do not possess a sufficiently detailed understanding of the physics of turbulent flows to permit reliable predictions of the lift or drag of these system.

In order to probe the physics of wall-bounded turbulent flows, a team of scientists at the University of Texas are conducting the largest ever Direct Numerical Simulation (DNS) of wall-bounded turbulence at Ret = 5200. With 242 billion degrees of freedom, this simulation is fifteen times larger than the previously largest channel DNS of Hoyas and Jimenez, conducted in 2006.

In a DNS of turbulence, the equations of fluid motion (the Navier-Stokes equations) are solved, without any modeling, at sufficient resolution to represent all the scales of turbulence. In general, the full three-dimensional data fields of turbulent flow are difficult to obtain experimentally. On the other hand, computer simulations provide exquisitely detailed and highly reliable data, which have driven a number of discoveries regarding the nature of wall-bounded turbulence.

However, the use of DNS to study high speed flows has been hindered by the significant computational expense of the simulations. Resolving all the essential scales of turbulence introduces enormous computational and memory requirements, requiring DNS to be performed on the largest supercomputers. For this reason, DNS is a challenging HPC problem, and is a commonly used application to evaluate the performance of Top-500 systems. Due to the great expense of running a DNS, improving efficiencies in computation allows the simulation of more realistic scenarios (higher Reynolds numbers and larger domains) than would otherwise be possible.

Vortex_structure
Vortex visualization of turbulent flow

M.K.(Myoungkyu) Lee, the lead developer of the new DNS code used in the simulations, will present the results of numerous software optimizations during the Extreme-Scale Applications Session at SC13, on Tuesday, Nov 19th, 1:30PM – 2:00PM. The presentation will detail scaling results across a variety of Top-500 platforms, such as the Texas Advanced Computing Center’s Lonestar and Stampede, the National Center for Supercomputing Applications’ Blue Waters, and Argonne Leadership Computing Facility’s Blue Gene/Q Mira, where the full scientific simulation was conducted.

The results demonstrate that performance is highly dependent on characteristics of the communication network and memory bandwidth, rather than single core performance. On Blue Gene/Q, for instance, the code exhibits approximately 80% strong scaling parallel efficiency at 786K cores relative to performance on 65K cores. The largest benchmark case uses 2.3 trillion grid points and the corresponding memory requirement is 130 Terabytes.

The code was developed using Fourier spectral methods, which are typically preferred for turbulence DNS because of the superior resolution properties, despite the resulting algorithmic need for expensive communication. Optimization was performed to address several major issues: efficiency of banded matrix linear algebra, cache reuse and memory access, threading efficiency and communication for the global data transposes.

A special linear algebra solver was developed, based on a custom matrix data structure in which non-zero elements are moved to otherwise empty elements, reducing the memory requirement by half, which is important for cache management. In addition, it is found that compilers inefficiently optimized the low-level operations on matrix elements for the LU decomposition. As a result, loops were unrolled by hand to improve reuse of data in cache.

Streamwise velocity (sides) and wall-shear stress (top) of turbulent flow between two parallel plates
Streamwise velocity (sides) and wall-shear stress (top) of turbulent flow between two parallel plates

FFTs, on-node data reordering and the time advance were all threaded using OpenMP to enhance single-node performance. These were very effective, with the code demonstrating nearly perfect OpenMP scalability (99%).

The talk will also discuss how replacing the existing library for 3D global Fast Fourier Transforms (P3DFFT) with a new library developed using the FFTW 3.3-MPI library and lead to substantially improved communication performance.

The full scientific simulation used 300 million core hours on ALCF’s BG/Q Mira from the Department of Energy Early Science Program and the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) 2013 Program. Each restart file generated by the simulation is 1.8 TB in size, with approximately eighty such files archived for long term postprocessing and investigation. Postprocessing this large an amount of data is also a supercomputing challenge.

Presentation Information

Title : Petascale Direct Numerical Simulation of Turbulent Channel Flow on up to 786K Cores

Location : Room 201/203

Session : Extreme-Scale Applications

Time :  Tuesday, Nov 19th, 1:30PM – 2:00PM

Presenter : M.K.(Myoungkyu) Lee

SC13 Scheduler : http://sc13.supercomputing.org/schedule/event_detail.php?evid=pap689

About

M.K. (Myoungkyu) Lee is a Ph.D student in Department of Mechanical Engineering at the University of Texas at Austin.
[email protected]

Nicholas Malaya is a researcher in the Center for Predictive Engineering and Computational Sciences (PECOS) within the Institute for Computational Engineering and Sciences (ICES) at The University of Texas at Austin.
[email protected]

Robert D. Moser holds the W. A. “Tex” Moncrief Jr. Chair in Computational Engineering and Sciences and is professor of mechanical engineering in thermal fluid systems. He serves as the director of the ICES Center for Predictive Engineering and Computational Sciences (PECOS) and deputy director of the Institute for Computational Engineering and Sciences(ICES).
[email protected]

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Pfizer HPC Engineer Aims to Automate Software Stack Testing

January 17, 2019

Seeking to reign in the tediousness of manual software testing, Pfizer HPC Engineer Shahzeb Siddiqui is developing an open source software tool called buildtest, aimed at automating software stack testing by providing the community with a central repository of tests for common HPC apps and the ability to automate execution of testing. Read more…

By Tiffany Trader

Senegal Prepares to Take Delivery of Atos Supercomputer

January 16, 2019

In just a few months time, Senegal will be operating the second largest HPC system in sub-Saharan Africa. The Minister of Higher Education, Research and Innovation Mary Teuw Niane made the announcement on Monday (Jan. 14 Read more…

By Tiffany Trader

Google Cloud Platform Extends GPU Instance Options

January 16, 2019

If it's Nvidia GPUs you're after to power your AI/HPC/visualization workload, Google Cloud has them, now claiming "broadest GPU availability." Each of the three big public cloud vendors has by turn touted the latest and Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Systems With Intel Omni-Path: Architected for Value and Accessible High-Performance Computing

Today’s high-performance computing (HPC) and artificial intelligence (AI) users value high performing clusters. And the higher the performance that their system can deliver, the better. Read more…

IBM Accelerated Insights

Resource Management in the Age of Artificial Intelligence

New challenges demand fresh approaches

Fueled by GPUs, big data, and rapid advances in software, the AI revolution is upon us. Read more…

STAC Floats ML Benchmark for Financial Services Workloads

January 16, 2019

STAC (Securities Technology Analysis Center) recently released an ‘exploratory’ benchmark for machine learning which it hopes will evolve into a firm benchmark or suite of benchmarking tools to compare the performanc Read more…

By John Russell

Google Cloud Platform Extends GPU Instance Options

January 16, 2019

If it's Nvidia GPUs you're after to power your AI/HPC/visualization workload, Google Cloud has them, now claiming "broadest GPU availability." Each of the three Read more…

By Tiffany Trader

STAC Floats ML Benchmark for Financial Services Workloads

January 16, 2019

STAC (Securities Technology Analysis Center) recently released an ‘exploratory’ benchmark for machine learning which it hopes will evolve into a firm benchm Read more…

By John Russell

A Big Data Journey While Seeking to Catalog our Universe

January 16, 2019

It turns out, astronomers have lots of photos of the sky but seek knowledge about what the photos mean. Sound familiar? Big data problems are often characterize Read more…

By James Reinders

Intel Bets Big on 2-Track Quantum Strategy

January 15, 2019

Quantum computing has lived so long in the future it’s taken on a futuristic life of its own, with a Gartner-style hype cycle that includes triggers of innovation, inflated expectations and – though a useful quantum system is still years away – anticipatory troughs of disillusionment. Read more…

By Doug Black

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM’s New Global Weather Forecasting System Runs on GPUs

January 9, 2019

Anyone who has checked a forecast to decide whether or not to pack an umbrella knows that weather prediction can be a mercurial endeavor. It is a Herculean task: the constant modeling of incredibly complex systems to a high degree of accuracy at a local level within very short spans of time. Read more…

By Oliver Peckham

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Microsoft to Buy Mellanox?

December 20, 2018

Networking equipment powerhouse Mellanox could be an acquisition target by Microsoft, according to a published report in an Israeli financial publication. Microsoft has reportedly gone so far as to engage Goldman Sachs to handle negotiations with Mellanox. Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This