SC13 Research Highlight: COCA Targets Datacenter Costs, Carbon Neutrality

By Shaolei Ren and Yuxiong He

November 16, 2013

The rapid growth of high performance computing and cloud computing services in recent years has contributed to the dramatic increase in the number and scale of data centers, resulting in a huge demand for electricity.

According to recent studies, the combined electricity consumption of global data centers amounts to 623 billion kWh annually and would rank 5th in the world if the data center were a country. As a significant portion of electricity is produced by coal or other carbon-intensive sources, it is often labeled as “brown energy” and the growing trend of the data center electricity consumption has raised serious concerns about its carbon footprint as well as environmental impacts, such as altering global patterns of temperature, rainfall, and creation of drought and flood.

Recently, large data center operators such as Google and Microsoft have been increasingly urged to find effective solutions to reduce their carbon emissions for sustainable computing and ultimately achieve an overall net-zero carbon footprint (i.e., carbon neutrality), as mandated by governments in the form of Kyoto-style protocols, voluntarily for public images, or urged by environmental organizations.

While it is beneficial for sustainability, achieving carbon neutrality presents significant challenges for data center operators, because the best location for building a data center may not be the most desired location for generating sufficient green energies (e.g., solar, wind) to satisfy the data center requirement and using carbon-free electricity directly from utility companies is not yet widely available. Thus, as a practical alternative, carbon-neutral data centers often rely on a bundle of approaches, such as generating off-site green (or renewable) energy and purchasing renewable energy credits (RECs): using renewable energy to indirectly offset electricity usage.

Completely offsetting electricity usage via off-site renewable energy generation for long-term carbon neutrality is desirable yet challenging: data centers need to carefully budget electricity usage over a long timescale (often a year) such that the “unknown” future brown energy consumption can be completely offset by limited renewables. While it seems to be easy to plan the electricity usage over a long timescale based on the future computing demand, a practical challenge is that the far future time-varying workloads or intermittent renewable energy availability cannot be accurately predicted and hence data centers need to decide electricity usage in an online manner.

In our research, we study long-term energy budgeting for a carbon-neutral data center and propose a provably-efficient online resource management algorithm, called COCA (optimizing for COst minimization and CArbon neutrality), for minimizing the operational cost while satisfying carbon neutrality without requiring long-term future information. Both electricity cost and delay performance are incorporated into our optimization objective.

COCA eliminates the requirement of knowing long-term future computing demand information by keeping track of the “carbon deficit” online. As the name implies, carbon deficit indicates how far the current data center operation deviates from carbon neutrality, or more precisely, how much the current electricity usage has exceeded the available renewables. Incorporating the carbon deficit into the optimization objective, COCA progressively adheres to carbon neutrality by adapting the weight of electricity consumption. Specifically, if the carbon deficit is larger, COCA will place more emphasis on reducing electricity consumption by turning down more servers such that the carbon deficit can be offset by future renewables. Thus, COCA works following the philosophy of “if violating carbon neutrality, then use less electricity”.  While the intuition is straightforward, we formally prove by extending the recently-developed Lyapunov optimization that COCA achieves a close-to-minimum operational cost, compared to the optimal offline algorithm with look-ahead information, while bounding the maximum possible carbon deficit.

Large data centers often consist of up to tens of thousands of servers, and distributed server management is highly desirable for scalability. Towards this end, we embed distributed resource management in COCA such that each server autonomously adjusts its processing speed (and hence, power consumption, too) and optimally decides the amount of workloads to process. Specifically, each server can “learn” the optimal decision by sampling a set of possible decisions and eventually choosing the best one with very high probability.

To validate COCA, we perform an extensive simulation study modeling the one-year operation of a large data center. Using real-world production traces to drive the simulation, we first compare COCA against state-of-the-art prediction-based method in terms of the average hourly operational cost. In particular, PerfectHP (Perfect Hourly Prediction heuristic), which perfectly predicts 48-hour-ahead workloads and allocates the carbon budget in proportion to the hourly workloads, is chosen as the benchmark. As shown in the figure, COCA is more cost effective compared to PerfectHP with a cost saving of more than 25% over one year. COCA achieves the benefit because even though the workload spikes and carbon neutrality is temporarily violated, it can focus on cost minimization while carbon deficit will then later guide the data center operation towards carbon neutrality. By contrast, without foreseeing the long-term future, short-term prediction-based PerfectHP may over-allocate the carbon budget at inappropriate time slots and thus have to set a stringent budget for certain time slots when the workload is high.

perfecthp

Next, we show that, under different electricity usage budgets, the operational cost of COCA is always fairly close to the minimum value achieved by the optimal offline algorithm with complete future information. Operational cost and electricity usage are normalized with respect to the carbon-unaware algorithm that disregards carbon neutrality and purely minimizes the operational cost. It can be seen that with a normalized electricity usage of 0.9 (i.e., saving 10% electricity usage compared to the carbon-unaware algorithm), COCA only increases the operational cost by less than 3% compared to both the carbon-unaware algorithm and the optimal offline algorithm that has the complete future information. This demonstrates a strong applicability of COCA in real systems due to its good performance and online execution without complete offline information.

offline

To summarize, COCA addresses carbon neutrality, an emerging issue in data centers: it enables data centers to achieve a low operational cost while satisfying carbon neutrality in the absence of long-term future information. The distinguishing feature of online and distributed implementation makes COCA an appealing candidate for autonomously managing computing resources in large data centers.

SESSION: Performance Management of HPC Systems

EVENT TYPE: Papers

TIME: Tuesday, 11:30AM – 12:00PM

ROOM: 401/402/403

Shaolei Ren received his Ph.D. from University of California, Los Angeles, in 2012 and is currently with Florida International University as an Assistant Professor. His research focuses on sustainability and emerging topics in cloud computing such as water usage effectiveness.

Yuxiong He is a researcher at Microsoft Research.  Her research interests include resource management, algorithms, modeling and performance evaluation of parallel and distributed systems.  Her recent work focuses on improving responsiveness, quality and throughput of large-scale interactive cloud services such as web search.  Yuxiong received her Ph.D. in Computer Science from Singapore-MIT Alliance in 2008.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

TACC Helps ROSIE Bioscience Gateway Expand its Impact

April 26, 2017

Biomolecule structure prediction has long been challenging not least because the relevant software and workflows often require high-end HPC systems that many bioscience researchers lack easy access to. Read more…

By John Russell

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

IBM, Nvidia, Stone Ridge Claim Gas & Oil Simulation Record

April 25, 2017

IBM, Nvidia, and Stone Ridge Technology today reported setting the performance record for a “billion cell” oil and gas reservoir simulation. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Remote Visualization Optimizing Life Sciences Operations and Care Delivery

As patients continually demand a better quality of care and increasingly complex workloads challenge healthcare organizations to innovate, investing in the right technologies is key to ensuring growth and success. Read more…

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This