SC13 Research Highlight: COCA Targets Datacenter Costs, Carbon Neutrality

By Shaolei Ren and Yuxiong He

November 16, 2013

The rapid growth of high performance computing and cloud computing services in recent years has contributed to the dramatic increase in the number and scale of data centers, resulting in a huge demand for electricity.

According to recent studies, the combined electricity consumption of global data centers amounts to 623 billion kWh annually and would rank 5th in the world if the data center were a country. As a significant portion of electricity is produced by coal or other carbon-intensive sources, it is often labeled as “brown energy” and the growing trend of the data center electricity consumption has raised serious concerns about its carbon footprint as well as environmental impacts, such as altering global patterns of temperature, rainfall, and creation of drought and flood.

Recently, large data center operators such as Google and Microsoft have been increasingly urged to find effective solutions to reduce their carbon emissions for sustainable computing and ultimately achieve an overall net-zero carbon footprint (i.e., carbon neutrality), as mandated by governments in the form of Kyoto-style protocols, voluntarily for public images, or urged by environmental organizations.

While it is beneficial for sustainability, achieving carbon neutrality presents significant challenges for data center operators, because the best location for building a data center may not be the most desired location for generating sufficient green energies (e.g., solar, wind) to satisfy the data center requirement and using carbon-free electricity directly from utility companies is not yet widely available. Thus, as a practical alternative, carbon-neutral data centers often rely on a bundle of approaches, such as generating off-site green (or renewable) energy and purchasing renewable energy credits (RECs): using renewable energy to indirectly offset electricity usage.

Completely offsetting electricity usage via off-site renewable energy generation for long-term carbon neutrality is desirable yet challenging: data centers need to carefully budget electricity usage over a long timescale (often a year) such that the “unknown” future brown energy consumption can be completely offset by limited renewables. While it seems to be easy to plan the electricity usage over a long timescale based on the future computing demand, a practical challenge is that the far future time-varying workloads or intermittent renewable energy availability cannot be accurately predicted and hence data centers need to decide electricity usage in an online manner.

In our research, we study long-term energy budgeting for a carbon-neutral data center and propose a provably-efficient online resource management algorithm, called COCA (optimizing for COst minimization and CArbon neutrality), for minimizing the operational cost while satisfying carbon neutrality without requiring long-term future information. Both electricity cost and delay performance are incorporated into our optimization objective.

COCA eliminates the requirement of knowing long-term future computing demand information by keeping track of the “carbon deficit” online. As the name implies, carbon deficit indicates how far the current data center operation deviates from carbon neutrality, or more precisely, how much the current electricity usage has exceeded the available renewables. Incorporating the carbon deficit into the optimization objective, COCA progressively adheres to carbon neutrality by adapting the weight of electricity consumption. Specifically, if the carbon deficit is larger, COCA will place more emphasis on reducing electricity consumption by turning down more servers such that the carbon deficit can be offset by future renewables. Thus, COCA works following the philosophy of “if violating carbon neutrality, then use less electricity”.  While the intuition is straightforward, we formally prove by extending the recently-developed Lyapunov optimization that COCA achieves a close-to-minimum operational cost, compared to the optimal offline algorithm with look-ahead information, while bounding the maximum possible carbon deficit.

Large data centers often consist of up to tens of thousands of servers, and distributed server management is highly desirable for scalability. Towards this end, we embed distributed resource management in COCA such that each server autonomously adjusts its processing speed (and hence, power consumption, too) and optimally decides the amount of workloads to process. Specifically, each server can “learn” the optimal decision by sampling a set of possible decisions and eventually choosing the best one with very high probability.

To validate COCA, we perform an extensive simulation study modeling the one-year operation of a large data center. Using real-world production traces to drive the simulation, we first compare COCA against state-of-the-art prediction-based method in terms of the average hourly operational cost. In particular, PerfectHP (Perfect Hourly Prediction heuristic), which perfectly predicts 48-hour-ahead workloads and allocates the carbon budget in proportion to the hourly workloads, is chosen as the benchmark. As shown in the figure, COCA is more cost effective compared to PerfectHP with a cost saving of more than 25% over one year. COCA achieves the benefit because even though the workload spikes and carbon neutrality is temporarily violated, it can focus on cost minimization while carbon deficit will then later guide the data center operation towards carbon neutrality. By contrast, without foreseeing the long-term future, short-term prediction-based PerfectHP may over-allocate the carbon budget at inappropriate time slots and thus have to set a stringent budget for certain time slots when the workload is high.


Next, we show that, under different electricity usage budgets, the operational cost of COCA is always fairly close to the minimum value achieved by the optimal offline algorithm with complete future information. Operational cost and electricity usage are normalized with respect to the carbon-unaware algorithm that disregards carbon neutrality and purely minimizes the operational cost. It can be seen that with a normalized electricity usage of 0.9 (i.e., saving 10% electricity usage compared to the carbon-unaware algorithm), COCA only increases the operational cost by less than 3% compared to both the carbon-unaware algorithm and the optimal offline algorithm that has the complete future information. This demonstrates a strong applicability of COCA in real systems due to its good performance and online execution without complete offline information.


To summarize, COCA addresses carbon neutrality, an emerging issue in data centers: it enables data centers to achieve a low operational cost while satisfying carbon neutrality in the absence of long-term future information. The distinguishing feature of online and distributed implementation makes COCA an appealing candidate for autonomously managing computing resources in large data centers.

SESSION: Performance Management of HPC Systems


TIME: Tuesday, 11:30AM – 12:00PM

ROOM: 401/402/403

Shaolei Ren received his Ph.D. from University of California, Los Angeles, in 2012 and is currently with Florida International University as an Assistant Professor. His research focuses on sustainability and emerging topics in cloud computing such as water usage effectiveness.

Yuxiong He is a researcher at Microsoft Research.  Her research interests include resource management, algorithms, modeling and performance evaluation of parallel and distributed systems.  Her recent work focuses on improving responsiveness, quality and throughput of large-scale interactive cloud services such as web search.  Yuxiong received her Ph.D. in Computer Science from Singapore-MIT Alliance in 2008.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Glimpses of Today’s Total Solar Eclipse

August 21, 2017

Here are a few arresting images posted by NASA of today’s total solar eclipse. Such astronomical events have always captured our imagination and it’s not hard to understand why such occurrences were often greeted wit Read more…

By John Russell

Tech Giants Outline Battle Plans for Future HPC Market

August 21, 2017

Four companies engaged in a cage fight for leadership in the emerging HPC market of the 2020s are, despite deep differences in some areas, in violent agreement on at least one thing: the power consumption and latency pen Read more…

By Doug Black

Geospatial Data Research Leverages GPUs

August 17, 2017

MapD Technologies, the GPU-accelerated database specialist, said it is working with university researchers on leveraging graphics processors to advance geospatial analytics. The San Francisco-based company is collabor Read more…

By George Leopold

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Centers (IPCCs) has resulted in a new Big Data Center (BDC) that Read more…

By Linda Barney

Tech Giants Outline Battle Plans for Future HPC Market

August 21, 2017

Four companies engaged in a cage fight for leadership in the emerging HPC market of the 2020s are, despite deep differences in some areas, in violent agreement Read more…

By Doug Black

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Leading Solution Providers

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This