SC13 Research Highlight: COCA Targets Datacenter Costs, Carbon Neutrality

By Shaolei Ren and Yuxiong He

November 16, 2013

The rapid growth of high performance computing and cloud computing services in recent years has contributed to the dramatic increase in the number and scale of data centers, resulting in a huge demand for electricity.

According to recent studies, the combined electricity consumption of global data centers amounts to 623 billion kWh annually and would rank 5th in the world if the data center were a country. As a significant portion of electricity is produced by coal or other carbon-intensive sources, it is often labeled as “brown energy” and the growing trend of the data center electricity consumption has raised serious concerns about its carbon footprint as well as environmental impacts, such as altering global patterns of temperature, rainfall, and creation of drought and flood.

Recently, large data center operators such as Google and Microsoft have been increasingly urged to find effective solutions to reduce their carbon emissions for sustainable computing and ultimately achieve an overall net-zero carbon footprint (i.e., carbon neutrality), as mandated by governments in the form of Kyoto-style protocols, voluntarily for public images, or urged by environmental organizations.

While it is beneficial for sustainability, achieving carbon neutrality presents significant challenges for data center operators, because the best location for building a data center may not be the most desired location for generating sufficient green energies (e.g., solar, wind) to satisfy the data center requirement and using carbon-free electricity directly from utility companies is not yet widely available. Thus, as a practical alternative, carbon-neutral data centers often rely on a bundle of approaches, such as generating off-site green (or renewable) energy and purchasing renewable energy credits (RECs): using renewable energy to indirectly offset electricity usage.

Completely offsetting electricity usage via off-site renewable energy generation for long-term carbon neutrality is desirable yet challenging: data centers need to carefully budget electricity usage over a long timescale (often a year) such that the “unknown” future brown energy consumption can be completely offset by limited renewables. While it seems to be easy to plan the electricity usage over a long timescale based on the future computing demand, a practical challenge is that the far future time-varying workloads or intermittent renewable energy availability cannot be accurately predicted and hence data centers need to decide electricity usage in an online manner.

In our research, we study long-term energy budgeting for a carbon-neutral data center and propose a provably-efficient online resource management algorithm, called COCA (optimizing for COst minimization and CArbon neutrality), for minimizing the operational cost while satisfying carbon neutrality without requiring long-term future information. Both electricity cost and delay performance are incorporated into our optimization objective.

COCA eliminates the requirement of knowing long-term future computing demand information by keeping track of the “carbon deficit” online. As the name implies, carbon deficit indicates how far the current data center operation deviates from carbon neutrality, or more precisely, how much the current electricity usage has exceeded the available renewables. Incorporating the carbon deficit into the optimization objective, COCA progressively adheres to carbon neutrality by adapting the weight of electricity consumption. Specifically, if the carbon deficit is larger, COCA will place more emphasis on reducing electricity consumption by turning down more servers such that the carbon deficit can be offset by future renewables. Thus, COCA works following the philosophy of “if violating carbon neutrality, then use less electricity”.  While the intuition is straightforward, we formally prove by extending the recently-developed Lyapunov optimization that COCA achieves a close-to-minimum operational cost, compared to the optimal offline algorithm with look-ahead information, while bounding the maximum possible carbon deficit.

Large data centers often consist of up to tens of thousands of servers, and distributed server management is highly desirable for scalability. Towards this end, we embed distributed resource management in COCA such that each server autonomously adjusts its processing speed (and hence, power consumption, too) and optimally decides the amount of workloads to process. Specifically, each server can “learn” the optimal decision by sampling a set of possible decisions and eventually choosing the best one with very high probability.

To validate COCA, we perform an extensive simulation study modeling the one-year operation of a large data center. Using real-world production traces to drive the simulation, we first compare COCA against state-of-the-art prediction-based method in terms of the average hourly operational cost. In particular, PerfectHP (Perfect Hourly Prediction heuristic), which perfectly predicts 48-hour-ahead workloads and allocates the carbon budget in proportion to the hourly workloads, is chosen as the benchmark. As shown in the figure, COCA is more cost effective compared to PerfectHP with a cost saving of more than 25% over one year. COCA achieves the benefit because even though the workload spikes and carbon neutrality is temporarily violated, it can focus on cost minimization while carbon deficit will then later guide the data center operation towards carbon neutrality. By contrast, without foreseeing the long-term future, short-term prediction-based PerfectHP may over-allocate the carbon budget at inappropriate time slots and thus have to set a stringent budget for certain time slots when the workload is high.

perfecthp

Next, we show that, under different electricity usage budgets, the operational cost of COCA is always fairly close to the minimum value achieved by the optimal offline algorithm with complete future information. Operational cost and electricity usage are normalized with respect to the carbon-unaware algorithm that disregards carbon neutrality and purely minimizes the operational cost. It can be seen that with a normalized electricity usage of 0.9 (i.e., saving 10% electricity usage compared to the carbon-unaware algorithm), COCA only increases the operational cost by less than 3% compared to both the carbon-unaware algorithm and the optimal offline algorithm that has the complete future information. This demonstrates a strong applicability of COCA in real systems due to its good performance and online execution without complete offline information.

offline

To summarize, COCA addresses carbon neutrality, an emerging issue in data centers: it enables data centers to achieve a low operational cost while satisfying carbon neutrality in the absence of long-term future information. The distinguishing feature of online and distributed implementation makes COCA an appealing candidate for autonomously managing computing resources in large data centers.

SESSION: Performance Management of HPC Systems

EVENT TYPE: Papers

TIME: Tuesday, 11:30AM – 12:00PM

ROOM: 401/402/403

Shaolei Ren received his Ph.D. from University of California, Los Angeles, in 2012 and is currently with Florida International University as an Assistant Professor. His research focuses on sustainability and emerging topics in cloud computing such as water usage effectiveness.

Yuxiong He is a researcher at Microsoft Research.  Her research interests include resource management, algorithms, modeling and performance evaluation of parallel and distributed systems.  Her recent work focuses on improving responsiveness, quality and throughput of large-scale interactive cloud services such as web search.  Yuxiong received her Ph.D. in Computer Science from Singapore-MIT Alliance in 2008.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

Nvidia Appoints Andy Grant as EMEA Director of Supercomputing, Higher Education, and AI

March 22, 2024

Nvidia recently appointed Andy Grant as Director, Supercomputing, Higher Education, and AI for Europe, the Middle East, and Africa (EMEA). With over 25 years of high-performance computing (HPC) experience, Grant brings a Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire