SC13 Research Highlight: Extreme Scale Plasma Turbulence Simulation

By Bei Wang, Stephane Ethier & William Tang

November 16, 2013

As the global energy economy makes the transition from fossil fuels toward cleaner alternatives, fusion becomes an attractive potential solution for satisfying the growing needs. Fusion energy, which is the power source for the sun, can be generated on earth, for example, in magnetically-confined laboratory plasma experiments (called “tokamaks”) when the isotopes of hydrogen (e.g., deuterium and tritium) combine to produce an energetic helium “alpha” particle and a fast neutron – with an overall energy multiplication factor of 450:1.

Building the scientific foundations needed to develop fusion power demands high-physics-fidelity predictive simulation capability for magnetically-confined fusion energy (MFE) plasmas. To do so in a timely way requires utilizing the power of modern supercomputers to simulate the complex dynamics governing MFE systems — including ITER, a multi-billion dollar international burning plasma experiment supported by 7 governments representing over half of the world’s population.

Unavoidable spatial variations in such systems produce microturbulence which can significantly increase the transport rate of heat, particles, and momentum across the confining magnetic field in tokamak devices.  Since the balance between these energy losses and the self-heating rates of the actual fusion reactions will ultimately determine the size and cost of an actual fusion reactor, understanding and possibly controlling the underlying physical processes is key to achieving the efficiency needed to help ensure the practicality of future fusion reactors.

The goal here is to gain new physics insights on MFE confinement scaling by making effective use of powerful world-class supercomputing systems such as the IBM Blue-Gene-Q “Mira” at the Argonne Leadership Class Facility (ALCF). Associated knowledge gained addresses the key question of how turbulent transport and associated confinement characteristics scale from present generation devices to the much larger ITER-scale plasmas. This involves the development of modern software capable of using leadership class supercomputers to carry out reliable first principles-based simulations of multi-scale tokamak plasmas.  The fusion physics challenge here is that the key decade-long MFE estimates of confinement scaling with device size (the so-called “Bohm to Gyro-Bohm” “rollover” trend caused by the ion temperature gradient instability) demands much higher resolution to be realistic/reliable.  Our important new fusion physics finding is that this “rollover” is much more gradual than established earlier in far lower resolution, shorter duration studies with magnitude of transport now reduced by a factor of two.

The basic particle method has long been a well established approach that simulates the behavior of charged particles interacting with each other through pair-wise electromagnetic forces.  At each time step, the particle properties are updated according to these calculated forces.  For applications on powerful modern supercomputers with deep cache hierarchy, a pure particle method is very efficient with respect to locality and arithmetic intensity (compute bound). Unfortunately, the O(N2 ) complexity makes a particle method impractical for plasma simulations using millions of particles per process.  Rather than calculating O(N2) forces, the particle-in-cell (PIC) method, which was introduced by J. Dawson and N. Birdsall in 1968, employs a grid as the media to calculate the long range electromagnetic forces.  This reduces the complexity from O(N2) to O(N+MlogM), where M is the number of grid points and is usually much smaller than N.  Specifically, the PIC simulations are being carried out using “macro” particles (~103 times the radius of a real charged ion particle) with characteristic properties, including position, velocity and weight.  However, achieving high parallel and architectural efficiency is very challenging for a PIC method due to potential fine-grained data hazards, irregular data access, and low arithmetic intensity.  The issue gets more severe as the HPC community moves into the future to address even more radical changes in computer architectures as the multicore and manycore revolution progresses.

Machines such as the IBM BG/Q Mira demand at least 49,152-way MPI parallelism and up to 3 million-way thread-level parallelism in order to fully utilize the system. While distributing particles to at least 49,152 processes is straightforward, the distribution of a 3D torus-shape grid among those processes is non-trivial. For example, first consider the 3D torus as being decomposed into sub-domains of uniform volume.  In a circular geometry, the sub-domains close to the edge of the system will contain more grid points than the core. This leads to potential load imbalance issues for the associated grid-based work.

Through a close collaboration with the Future Technologies Group at the Lawrence Berkeley National Laboratory, we have developed and optimized a new version of the Gyrokinetic Toroidal Code (“GTC-Princeton” or “GTC-P”) to address the challenges in the PIC method for leadership-class systems in the multicore/manycore regime.  GTC-P includes multiple levels of parallelism, a 2D domain decomposition, a particle decomposition, and a loop level parallelism implemented with OpenMP – all of which help enable this state-of-the-art PIC code to efficiently scale to the full capability of the largest extreme scale HPC systems currently available. Special attention has been paid to the load imbalance issue associated with domain decomposition. To improve single node performance, we select a “structure-of-arrays” (SOA) data layout for particle data, align memory allocation to facilitate SIMD intrinsic, binning particles to improve locality, and use loop fusion to improve arithmetic intensity. We also manually flatten irregular nested loop to expose more parallelization to OpenMP threads. GTC-P features a two-dimensional topology for point-to-point communication. On the IBM BG/Q system with 5D torus network, we have optimized communication with customized process mapping. Data parallelism is also being continuously exploited through SIMD intrinsics (e.g., QPX intrinsics on IBM BG/Q) and by improving data movement through software pre-fetching.

Simulations of confinement physics for large-scale MFE plasmas have been carried out for the first time with very high phase-space resolution and long temporal duration to deliver important new scientific insights. This was enabled by the new “GTC-P” code which was developed to use multi-petascale capabilities on world-class systems such as the IBM BG-Q  “Mira” @ ALCF  and also “Sequoia” @ LLNL.  (Accomplishments are summarized in the two figures below.)

Bei1

Figure 1:  Modern GTC-Princeton (GTC-P) Code Performance on World-Class IBM BG-Q Systems

bei2

Figure 2:  Important new scientific discoveries enabled by harnessing modern supercomputing capabilities at extreme scale

The success of these projects were greatly facilitated by the fact that true interdisciplinary collaborative effort with Computer Science and Applied Math scientists have produced modern C and CUDA versions of the key HPC code (originally written — as in the case of the vast majority of codes in the FES application domain) in Fortran-90.  The demonstrated capability to run at scale on the largest open-science IBM BG-Q system (“Mira” at the ALCF) opened the door to obtain access to NNSA’s “Sequoia” system at LLNL – which then produced the outstanding results shown on Figure 1.  More recently, excellent performance of the GPU-version of GTC-P has been demonstrated on the “Titan” system at the Oak Ridge Leadership Class Facility (OLCF).  Finally, the G8-sponsored international R&D advances have enabled this project to gain collaborative access to a number of the top international supercomputing facilities — including the Fujitsu K Computer, Japan’s #1 supercomputer.   In addition, these highly visible accomplishments have very recently enabled this project to begin collaborative applications on China’s new Tianhe-2 (TH-2) Intel-MIC-based system – the #1 supercomputing system worldwide.

RESEARCH TEAM:  Bei Wang (Princeton U), Stephane Ethier (PPPL), William Tang (Princeton U/PPPL), K. Ibrahim, S. Williams, L. Oliker (LBNL), K. Madduri (Penn State U), Tim Williams (ANL)

Link to SC13 conference: http://sc13.supercomputing.org/schedule/event_detail.php?evid=pap402

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SRC Spends $200M on University Research Centers

January 16, 2018

The Semiconductor Research Corporation, as part of its JUMP initiative, has awarded $200 million to fund six research centers whose areas of focus span cognitive computing, memory-centric computing, high-speed communicat Read more…

By John Russell

US Seeks to Automate Video Analysis

January 16, 2018

U.S. military and intelligence agencies continue to look for new ways to use artificial intelligence to sift through huge amounts of video imagery in hopes of freeing analysts to identify threats and otherwise put their Read more…

By George Leopold

URISC@SC17 and the #LongestLastMile

January 11, 2018

A multinational delegation recently attended the Understanding Risk in Shared CyberEcosystems workshop, or URISC@SC17, in Denver, Colorado. URISC participants and presenters from 11 countries, including eight African nations, 12 U.S. states, Canada, India and Nepal, also attended SC17, the annual international conference for high performance computing, networking, storage and analysis that drew nearly 13,000 attendees. Read more…

By Elizabeth Leake, STEM-Trek Nonprofit

HPE Extreme Performance Solutions

HPE and NREL Take Steps to Create a Sustainable, Energy-Efficient Data Center with an H2 Fuel Cell

As enterprises attempt to manage rising volumes of data, unplanned data center outages are becoming more common and more expensive. As the cost of downtime rises, enterprises lose out on productivity and valuable competitive advantage without access to their critical data. Read more…

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

SRC Spends $200M on University Research Centers

January 16, 2018

The Semiconductor Research Corporation, as part of its JUMP initiative, has awarded $200 million to fund six research centers whose areas of focus span cognitiv Read more…

By John Russell

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

ANL’s Rick Stevens on CANDLE, ARM, Quantum, and More

January 8, 2018

Late last year HPCwire caught up with Rick Stevens, associate laboratory director for computing, environment and life Sciences at Argonne National Laboratory, f Read more…

By John Russell

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

The @hpcnotes Predictions for HPC in 2018

January 4, 2018

I’m not averse to making predictions about the world of High Performance Computing (and Supercomputing, Cloud, etc.) in person at conferences, meetings, causa Read more…

By Andrew Jones

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Leading Solution Providers

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Nvidia, Partners Announce Several V100 Servers

September 27, 2017

Here come the Volta 100-based servers. Nvidia today announced an impressive line-up of servers from major partners – Dell EMC, Hewlett Packard Enterprise, IBM Read more…

By John Russell

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

  • arrow
  • Click Here for More Headlines
  • arrow
Share This