SC13 Research Highlight: Extreme Scale Plasma Turbulence Simulation

By Bei Wang, Stephane Ethier & William Tang

November 16, 2013

As the global energy economy makes the transition from fossil fuels toward cleaner alternatives, fusion becomes an attractive potential solution for satisfying the growing needs. Fusion energy, which is the power source for the sun, can be generated on earth, for example, in magnetically-confined laboratory plasma experiments (called “tokamaks”) when the isotopes of hydrogen (e.g., deuterium and tritium) combine to produce an energetic helium “alpha” particle and a fast neutron – with an overall energy multiplication factor of 450:1.

Building the scientific foundations needed to develop fusion power demands high-physics-fidelity predictive simulation capability for magnetically-confined fusion energy (MFE) plasmas. To do so in a timely way requires utilizing the power of modern supercomputers to simulate the complex dynamics governing MFE systems — including ITER, a multi-billion dollar international burning plasma experiment supported by 7 governments representing over half of the world’s population.

Unavoidable spatial variations in such systems produce microturbulence which can significantly increase the transport rate of heat, particles, and momentum across the confining magnetic field in tokamak devices.  Since the balance between these energy losses and the self-heating rates of the actual fusion reactions will ultimately determine the size and cost of an actual fusion reactor, understanding and possibly controlling the underlying physical processes is key to achieving the efficiency needed to help ensure the practicality of future fusion reactors.

The goal here is to gain new physics insights on MFE confinement scaling by making effective use of powerful world-class supercomputing systems such as the IBM Blue-Gene-Q “Mira” at the Argonne Leadership Class Facility (ALCF). Associated knowledge gained addresses the key question of how turbulent transport and associated confinement characteristics scale from present generation devices to the much larger ITER-scale plasmas. This involves the development of modern software capable of using leadership class supercomputers to carry out reliable first principles-based simulations of multi-scale tokamak plasmas.  The fusion physics challenge here is that the key decade-long MFE estimates of confinement scaling with device size (the so-called “Bohm to Gyro-Bohm” “rollover” trend caused by the ion temperature gradient instability) demands much higher resolution to be realistic/reliable.  Our important new fusion physics finding is that this “rollover” is much more gradual than established earlier in far lower resolution, shorter duration studies with magnitude of transport now reduced by a factor of two.

The basic particle method has long been a well established approach that simulates the behavior of charged particles interacting with each other through pair-wise electromagnetic forces.  At each time step, the particle properties are updated according to these calculated forces.  For applications on powerful modern supercomputers with deep cache hierarchy, a pure particle method is very efficient with respect to locality and arithmetic intensity (compute bound). Unfortunately, the O(N2 ) complexity makes a particle method impractical for plasma simulations using millions of particles per process.  Rather than calculating O(N2) forces, the particle-in-cell (PIC) method, which was introduced by J. Dawson and N. Birdsall in 1968, employs a grid as the media to calculate the long range electromagnetic forces.  This reduces the complexity from O(N2) to O(N+MlogM), where M is the number of grid points and is usually much smaller than N.  Specifically, the PIC simulations are being carried out using “macro” particles (~103 times the radius of a real charged ion particle) with characteristic properties, including position, velocity and weight.  However, achieving high parallel and architectural efficiency is very challenging for a PIC method due to potential fine-grained data hazards, irregular data access, and low arithmetic intensity.  The issue gets more severe as the HPC community moves into the future to address even more radical changes in computer architectures as the multicore and manycore revolution progresses.

Machines such as the IBM BG/Q Mira demand at least 49,152-way MPI parallelism and up to 3 million-way thread-level parallelism in order to fully utilize the system. While distributing particles to at least 49,152 processes is straightforward, the distribution of a 3D torus-shape grid among those processes is non-trivial. For example, first consider the 3D torus as being decomposed into sub-domains of uniform volume.  In a circular geometry, the sub-domains close to the edge of the system will contain more grid points than the core. This leads to potential load imbalance issues for the associated grid-based work.

Through a close collaboration with the Future Technologies Group at the Lawrence Berkeley National Laboratory, we have developed and optimized a new version of the Gyrokinetic Toroidal Code (“GTC-Princeton” or “GTC-P”) to address the challenges in the PIC method for leadership-class systems in the multicore/manycore regime.  GTC-P includes multiple levels of parallelism, a 2D domain decomposition, a particle decomposition, and a loop level parallelism implemented with OpenMP – all of which help enable this state-of-the-art PIC code to efficiently scale to the full capability of the largest extreme scale HPC systems currently available. Special attention has been paid to the load imbalance issue associated with domain decomposition. To improve single node performance, we select a “structure-of-arrays” (SOA) data layout for particle data, align memory allocation to facilitate SIMD intrinsic, binning particles to improve locality, and use loop fusion to improve arithmetic intensity. We also manually flatten irregular nested loop to expose more parallelization to OpenMP threads. GTC-P features a two-dimensional topology for point-to-point communication. On the IBM BG/Q system with 5D torus network, we have optimized communication with customized process mapping. Data parallelism is also being continuously exploited through SIMD intrinsics (e.g., QPX intrinsics on IBM BG/Q) and by improving data movement through software pre-fetching.

Simulations of confinement physics for large-scale MFE plasmas have been carried out for the first time with very high phase-space resolution and long temporal duration to deliver important new scientific insights. This was enabled by the new “GTC-P” code which was developed to use multi-petascale capabilities on world-class systems such as the IBM BG-Q  “Mira” @ ALCF  and also “Sequoia” @ LLNL.  (Accomplishments are summarized in the two figures below.)

Bei1

Figure 1:  Modern GTC-Princeton (GTC-P) Code Performance on World-Class IBM BG-Q Systems

bei2

Figure 2:  Important new scientific discoveries enabled by harnessing modern supercomputing capabilities at extreme scale

The success of these projects were greatly facilitated by the fact that true interdisciplinary collaborative effort with Computer Science and Applied Math scientists have produced modern C and CUDA versions of the key HPC code (originally written — as in the case of the vast majority of codes in the FES application domain) in Fortran-90.  The demonstrated capability to run at scale on the largest open-science IBM BG-Q system (“Mira” at the ALCF) opened the door to obtain access to NNSA’s “Sequoia” system at LLNL – which then produced the outstanding results shown on Figure 1.  More recently, excellent performance of the GPU-version of GTC-P has been demonstrated on the “Titan” system at the Oak Ridge Leadership Class Facility (OLCF).  Finally, the G8-sponsored international R&D advances have enabled this project to gain collaborative access to a number of the top international supercomputing facilities — including the Fujitsu K Computer, Japan’s #1 supercomputer.   In addition, these highly visible accomplishments have very recently enabled this project to begin collaborative applications on China’s new Tianhe-2 (TH-2) Intel-MIC-based system – the #1 supercomputing system worldwide.

RESEARCH TEAM:  Bei Wang (Princeton U), Stephane Ethier (PPPL), William Tang (Princeton U/PPPL), K. Ibrahim, S. Williams, L. Oliker (LBNL), K. Madduri (Penn State U), Tim Williams (ANL)

Link to SC13 conference: http://sc13.supercomputing.org/schedule/event_detail.php?evid=pap402

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Google Cloud Makes Good on Promise to Add Nvidia P100 GPUs

September 21, 2017

Google has taken down the notice on its cloud platform website that says Nvidia Tesla P100s are “coming soon.” That's because the search giant has announced the beta launch of the high-end P100 Nvidia Tesla GPUs on t Read more…

By George Leopold

Cray Wins $48M Supercomputer Contract from KISTI

September 21, 2017

It was a good day for Cray which won a $48 million contract from the Korea Institute of Science and Technology Information (KISTI) for a 128-rack CS500 cluster supercomputer. The new system, equipped with Intel Xeon Scal Read more…

By John Russell

Adolfy Hoisie to Lead Brookhaven’s Computing for National Security Effort

September 21, 2017

Brookhaven National Laboratory announced today that Adolfy Hoisie will chair its newly formed Computing for National Security department, which is part of Brookhaven’s new Computational Science Initiative (CSI). Read more…

By John Russell

HPE Extreme Performance Solutions

HPE Prepares Customers for Success with the HPC Software Portfolio

High performance computing (HPC) software is key to harnessing the full power of HPC environments. Development and management tools enable IT departments to streamline installation and maintenance of their systems as well as create, optimize, and run their HPC applications. Read more…

PNNL’s Center for Advanced Tech Evaluation Seeks Wider HPC Community Ties

September 21, 2017

Two years ago the Department of Energy established the Center for Advanced Technology Evaluation (CENATE) at Pacific Northwest National Laboratory (PNNL). CENATE’s ambitious mission was to be a proving ground for near- Read more…

By John Russell

Stanford University and UberCloud Achieve Breakthrough in Living Heart Simulations

September 21, 2017

Cardiac arrhythmia can be an undesirable and potentially lethal side effect of drugs. During this condition, the electrical activity of the heart turns chaotic, Read more…

By Wolfgang Gentzsch, UberCloud, and Francisco Sahli, Stanford University

PNNL’s Center for Advanced Tech Evaluation Seeks Wider HPC Community Ties

September 21, 2017

Two years ago the Department of Energy established the Center for Advanced Technology Evaluation (CENATE) at Pacific Northwest National Laboratory (PNNL). CENAT Read more…

By John Russell

Exascale Computing Project Names Doug Kothe as Director

September 20, 2017

The Department of Energy’s Exascale Computing Project (ECP) has named Doug Kothe as its new director effective October 1. He replaces Paul Messina, who is stepping down after two years to return to Argonne National Laboratory. Kothe is a 32-year veteran of DOE’s National Laboratory System. Read more…

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blu Read more…

By Merle Giles

Kathy Yelick Charts the Promise and Progress of Exascale Science

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakthrough Science at the Exascale” at the ACM Europe Conference in Barcelona. In conjunction with her presentation, Yelick agreed to a short Q&A discussion with HPCwire. Read more…

By Tiffany Trader

DARPA Pledges Another $300 Million for Post-Moore’s Readiness

September 14, 2017

The Defense Advanced Research Projects Agency (DARPA) launched a giant funding effort to ensure the United States can sustain the pace of electronic innovation vital to both a flourishing economy and a secure military. Under the banner of the Electronics Resurgence Initiative (ERI), some $500-$800 million will be invested in post-Moore’s Law technologies. Read more…

By Tiffany Trader

IBM Breaks Ground for Complex Quantum Chemistry

September 14, 2017

IBM has reported the use of a novel algorithm to simulate BeH2 (beryllium-hydride) on a quantum computer. This is the largest molecule so far simulated on a quantum computer. The technique, which used six qubits of a seven-qubit system, is an important step forward and may suggest an approach to simulating ever larger molecules. Read more…

By John Russell

Cubes, Culture, and a New Challenge: Trish Damkroger Talks about Life at Intel—and Why HPC Matters More Than Ever

September 13, 2017

Trish Damkroger wasn’t looking to change jobs when she attended SC15 in Austin, Texas. Capping a 15-year career within Department of Energy (DOE) laboratories, she was acting Associate Director for Computation at Lawrence Livermore National Laboratory (LLNL). Her mission was to equip the lab’s scientists and research partners with resources that would advance their cutting-edge work... Read more…

By Jan Rowell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

Leading Solution Providers

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

GlobalFoundries: 7nm Chips Coming in 2018, EUV in 2019

June 13, 2017

GlobalFoundries has formally announced that its 7nm technology is ready for customer engagement with product tape outs expected for the first half of 2018. The Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This