SC13 Research Highlight: Extreme Scale Plasma Turbulence Simulation

By Bei Wang, Stephane Ethier & William Tang

November 16, 2013

As the global energy economy makes the transition from fossil fuels toward cleaner alternatives, fusion becomes an attractive potential solution for satisfying the growing needs. Fusion energy, which is the power source for the sun, can be generated on earth, for example, in magnetically-confined laboratory plasma experiments (called “tokamaks”) when the isotopes of hydrogen (e.g., deuterium and tritium) combine to produce an energetic helium “alpha” particle and a fast neutron – with an overall energy multiplication factor of 450:1.

Building the scientific foundations needed to develop fusion power demands high-physics-fidelity predictive simulation capability for magnetically-confined fusion energy (MFE) plasmas. To do so in a timely way requires utilizing the power of modern supercomputers to simulate the complex dynamics governing MFE systems — including ITER, a multi-billion dollar international burning plasma experiment supported by 7 governments representing over half of the world’s population.

Unavoidable spatial variations in such systems produce microturbulence which can significantly increase the transport rate of heat, particles, and momentum across the confining magnetic field in tokamak devices.  Since the balance between these energy losses and the self-heating rates of the actual fusion reactions will ultimately determine the size and cost of an actual fusion reactor, understanding and possibly controlling the underlying physical processes is key to achieving the efficiency needed to help ensure the practicality of future fusion reactors.

The goal here is to gain new physics insights on MFE confinement scaling by making effective use of powerful world-class supercomputing systems such as the IBM Blue-Gene-Q “Mira” at the Argonne Leadership Class Facility (ALCF). Associated knowledge gained addresses the key question of how turbulent transport and associated confinement characteristics scale from present generation devices to the much larger ITER-scale plasmas. This involves the development of modern software capable of using leadership class supercomputers to carry out reliable first principles-based simulations of multi-scale tokamak plasmas.  The fusion physics challenge here is that the key decade-long MFE estimates of confinement scaling with device size (the so-called “Bohm to Gyro-Bohm” “rollover” trend caused by the ion temperature gradient instability) demands much higher resolution to be realistic/reliable.  Our important new fusion physics finding is that this “rollover” is much more gradual than established earlier in far lower resolution, shorter duration studies with magnitude of transport now reduced by a factor of two.

The basic particle method has long been a well established approach that simulates the behavior of charged particles interacting with each other through pair-wise electromagnetic forces.  At each time step, the particle properties are updated according to these calculated forces.  For applications on powerful modern supercomputers with deep cache hierarchy, a pure particle method is very efficient with respect to locality and arithmetic intensity (compute bound). Unfortunately, the O(N2 ) complexity makes a particle method impractical for plasma simulations using millions of particles per process.  Rather than calculating O(N2) forces, the particle-in-cell (PIC) method, which was introduced by J. Dawson and N. Birdsall in 1968, employs a grid as the media to calculate the long range electromagnetic forces.  This reduces the complexity from O(N2) to O(N+MlogM), where M is the number of grid points and is usually much smaller than N.  Specifically, the PIC simulations are being carried out using “macro” particles (~103 times the radius of a real charged ion particle) with characteristic properties, including position, velocity and weight.  However, achieving high parallel and architectural efficiency is very challenging for a PIC method due to potential fine-grained data hazards, irregular data access, and low arithmetic intensity.  The issue gets more severe as the HPC community moves into the future to address even more radical changes in computer architectures as the multicore and manycore revolution progresses.

Machines such as the IBM BG/Q Mira demand at least 49,152-way MPI parallelism and up to 3 million-way thread-level parallelism in order to fully utilize the system. While distributing particles to at least 49,152 processes is straightforward, the distribution of a 3D torus-shape grid among those processes is non-trivial. For example, first consider the 3D torus as being decomposed into sub-domains of uniform volume.  In a circular geometry, the sub-domains close to the edge of the system will contain more grid points than the core. This leads to potential load imbalance issues for the associated grid-based work.

Through a close collaboration with the Future Technologies Group at the Lawrence Berkeley National Laboratory, we have developed and optimized a new version of the Gyrokinetic Toroidal Code (“GTC-Princeton” or “GTC-P”) to address the challenges in the PIC method for leadership-class systems in the multicore/manycore regime.  GTC-P includes multiple levels of parallelism, a 2D domain decomposition, a particle decomposition, and a loop level parallelism implemented with OpenMP – all of which help enable this state-of-the-art PIC code to efficiently scale to the full capability of the largest extreme scale HPC systems currently available. Special attention has been paid to the load imbalance issue associated with domain decomposition. To improve single node performance, we select a “structure-of-arrays” (SOA) data layout for particle data, align memory allocation to facilitate SIMD intrinsic, binning particles to improve locality, and use loop fusion to improve arithmetic intensity. We also manually flatten irregular nested loop to expose more parallelization to OpenMP threads. GTC-P features a two-dimensional topology for point-to-point communication. On the IBM BG/Q system with 5D torus network, we have optimized communication with customized process mapping. Data parallelism is also being continuously exploited through SIMD intrinsics (e.g., QPX intrinsics on IBM BG/Q) and by improving data movement through software pre-fetching.

Simulations of confinement physics for large-scale MFE plasmas have been carried out for the first time with very high phase-space resolution and long temporal duration to deliver important new scientific insights. This was enabled by the new “GTC-P” code which was developed to use multi-petascale capabilities on world-class systems such as the IBM BG-Q  “Mira” @ ALCF  and also “Sequoia” @ LLNL.  (Accomplishments are summarized in the two figures below.)

Bei1

Figure 1:  Modern GTC-Princeton (GTC-P) Code Performance on World-Class IBM BG-Q Systems

bei2

Figure 2:  Important new scientific discoveries enabled by harnessing modern supercomputing capabilities at extreme scale

The success of these projects were greatly facilitated by the fact that true interdisciplinary collaborative effort with Computer Science and Applied Math scientists have produced modern C and CUDA versions of the key HPC code (originally written — as in the case of the vast majority of codes in the FES application domain) in Fortran-90.  The demonstrated capability to run at scale on the largest open-science IBM BG-Q system (“Mira” at the ALCF) opened the door to obtain access to NNSA’s “Sequoia” system at LLNL – which then produced the outstanding results shown on Figure 1.  More recently, excellent performance of the GPU-version of GTC-P has been demonstrated on the “Titan” system at the Oak Ridge Leadership Class Facility (OLCF).  Finally, the G8-sponsored international R&D advances have enabled this project to gain collaborative access to a number of the top international supercomputing facilities — including the Fujitsu K Computer, Japan’s #1 supercomputer.   In addition, these highly visible accomplishments have very recently enabled this project to begin collaborative applications on China’s new Tianhe-2 (TH-2) Intel-MIC-based system – the #1 supercomputing system worldwide.

RESEARCH TEAM:  Bei Wang (Princeton U), Stephane Ethier (PPPL), William Tang (Princeton U/PPPL), K. Ibrahim, S. Williams, L. Oliker (LBNL), K. Madduri (Penn State U), Tim Williams (ANL)

Link to SC13 conference: http://sc13.supercomputing.org/schedule/event_detail.php?evid=pap402

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Scalable Informatics Ceases Operations

March 23, 2017

On the same day we reported on the uncertain future for HPC compiler company PathScale, we are sad to learn that another HPC vendor, Scalable Informatics, is closing its doors. Read more…

By Tiffany Trader

‘Strategies in Biomedical Data Science’ Advances IT-Research Synergies

March 23, 2017

“Strategies in Biomedical Data Science: Driving Force for Innovation” by Jay A. Etchings is both an introductory text and a field guide for anyone working with biomedical data. Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Google Launches New Machine Learning Journal

March 22, 2017

On Monday, Google announced plans to launch a new peer review journal and “ecosystem” Read more…

By John Russell

HPE Extreme Performance Solutions

HFT Firms Turn to Co-Location to Gain Competitive Advantage

High-frequency trading (HFT) is a high-speed, high-stakes world where every millisecond matters. Finding ways to execute trades faster than the competition translates directly to greater revenue for firms, brokerages, and exchanges. Read more…

Swiss Researchers Peer Inside Chips with Improved X-Ray Imaging

March 22, 2017

Peering inside semiconductor chips using x-ray imaging isn’t new, but the technique hasn’t been especially good or easy to accomplish. Read more…

By John Russell

LANL Simulation Shows Massive Black Holes Break ‘Speed Limit’

March 21, 2017

A new computer simulation based on codes developed at Los Alamos National Laboratory (LANL) is shedding light on how supermassive black holes could have formed in the early universe contrary to most prior models which impose a limit on how fast these massive ‘objects’ can form. Read more…

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Intel Ships Drives Based on 3D XPoint Non-volatile Memory

March 20, 2017

Intel Corp. has begun shipping new storage drives based on its 3D XPoint non-volatile memory technology as it targets data-driven workloads. Intel’s new Optane solid-state drives, designated P4800X, seek to combine the attributes of memory and storage in the same device. Read more…

By George Leopold

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

Nvidia Debuts HGX-1 for Cloud; Announces Fujitsu AI Deal

March 9, 2017

On Monday Nvidia announced a major deal with Fujitsu to help build an AI supercomputer for RIKEN using 24 DGX-1 servers. Read more…

By John Russell

HPC4Mfg Advances State-of-the-Art for American Manufacturing

March 9, 2017

Last Friday (March 3, 2017), the High Performance Computing for Manufacturing (HPC4Mfg) program held an industry engagement day workshop in San Diego, bringing together members of the US manufacturing community, national laboratories and universities to discuss the role of high-performance computing as an innovation engine for American manufacturing. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Leading Solution Providers

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This