SC13 Research Highlight: There Goes the Performance Neighborhood…

By Drs. Abhinav Bhatele, Kathryn Mohror, Steven Langer & Katherine Isaacs

November 16, 2013

Message passing can take up a significant fraction of the run time for massively parallel science simulation codes. Consistently high message passing rates are required for these codes to deliver good performance. At Supercomputing 2013 (SC13), our research team from Lawrence Livermore (LLNL) will present the results of our study that show that run-to-run variability in message passing rates can reduce throughput by 30% or more due to contention with other jobs for the network links.

Performance variability can result in individual jobs running slower, which in turn can lead to a longer wait for the science results and increase the waiting time in the queue for other jobs.  Reducing such variability could improve overall throughput at a computer center and save energy costs.  Performance variability also impacts the development cycle for high-performance computing (HPC) applications. It can complicate tasks such as: debugging performance issues in an application code, quantifying the effects of code changes on performance, measuring the effects of compiler or system software changes, and determining how much time to request for a batch job. Thus, we set out to investigate the possible sources of such performance variability on supercomputer systems.

In our study, we focused on pF3D, a code that simulates laser-plasma interactions in experiments at the National Ignition Facility at LLNL.  In 2011, we began doing production runs of pF3D on Cielo, a 1.37 Petaflop/s Cray XE6 system installed at Los Alamos. Concurrently, we ran pF3D on Dawn, an IBM Blue Gene/P system at LLNL. The run times of identical jobs on Cielo varied by 20% while there was very little variability on Dawn. The differences in run time were due to varying message passing rates. These early results prompted us to do a systematic study of message rate variability on three U.S.  Department of Energy (DOE) supercomputers: Intrepid, an IBM Blue Gene/P at Argonne (ANL), Mira, an IBM Blue Gene/Q at Argonne, and Hopper, a Cray XE6 at Lawrence Berkeley (LBNL).

Over the course of forty-five days, we submitted a short benchmarking run of pF3D every day to record the performance behavior of the application and some information about the system state, including the shape of the job partition allocated to the job, and other jobs running on the system and their node allocations. The “shape” of the job partition refers to the physical locations of the allocated nodes in the interconnect topology of the system.  Mira has a five-dimensional torus interconnect while Hopper and Intrepid have a three-dimensional torus interconnect. Below, we show a plot of the average messaging rate for each job as a function of when it was run on the three systems.  We compute the average messaging rate by dividing the total volume of communication in bytes by the total time spent in sending the messages over the network.

AbRevise

Click to enlarge

We see that on the IBM systems, Intrepid and Mira, there is negligible variation in the messaging performance. However, on the Cray system (Hopper), the slowest job on any given day may run at half the speed of the fastest job. Application users choose the amount of work to assign to each batch job to ensure that there is sufficient time to save results even on a day with poor performance.  This results in less average work completed per batch job than on a system with repeatable performance and the need for more batch job slots (and more calendar days) to complete a simulation.

In this SC13 paper (presentation schedule below), we attempt to narrow down the root causes of this performance variability on Hopper.  Several factors can make the performance of an application variable within and across batch jobs. These factors include noise from operating system (OS) daemons, communication variability arising from the shape of the allocated partition, and interference from other jobs sharing the same network links.  Below, we present observational evidence that indicates which factor leads to the highest performance variability. We show the placement of pF3D (blue) and conflicting jobs (other colors) on Hopper for two separate short runs in the figure below. The job from April 11 (left) yielded a messaging rate nearly 25% below that of the job run on April 16 (right). The two jobs had the same node placement, but the slower April 11 job was surrounded by several other jobs, including a large communication-heavy job (green).  More detailed analysis that provides stronger evidence for the effect of inter-job interference on performance can be found in the paper.

same-shape-different-rates

Acknowledgement: This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work was funded by the Laboratory Directed Research and Development Program at LLNL under project tracking codes 13-ERD-055 and 13-FS-002 (LLNL-MI-645823).

Read more about this research at https://computation-rnd.llnl.gov/extreme-computing/interconnection-networks.php

Presentation Schedule:

Authors: Abhinav Bhatele, Kathryn Mohror, Steven H. Langer, Katherine E. Isaacs

Day: Tuesday (November 19, 2013)

Time: 4:00 – 4:30 PM

Location: 401/402/403

About the Authors

bhateleDr. Abhinav Bhatele is a computer scientist in the Center for Applied Scientific Computing at Lawrence Livermore National Laboratory. His interests lie in performance optimizations through analysis, visualization and tuning and developing algorithms for high-end parallel systems.

 

mahKathryn Mohror is a computer scientist at Lawrence Livermore National Laboratory (LLNL). She is a member of the Scalability Team at LLNL and her research on high-end computing systems is currently focused on scalable fault tolerant computing and performance measurement and analysis.
Steven Langer is currently a computational physicist at Lawrence Livermore National Laboratory. His research interests include inertial confinement fusion, performance analysis of HPC applications, scalability of message passing and I/O in applications, and understanding how to modify multi-physics simulation codes to run efficiently on upcoming exascale hardware.
Katherine Isaacs is a graduate student at the University of California, Davis. Her research focuses on information visualization techniques for performance analysis.
Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Intel Speeds NAMD by 1.8x: Saves Xeon Processor Users Millions of Compute Hours

August 12, 2020

Potentially saving datacenters millions of CPU node hours, Intel and the University of Illinois at Urbana–Champaign (UIUC) have collaborated to develop AVX-512 optimizations for the NAMD scalable molecular dynamics cod Read more…

By Rob Farber

Intel’s Optane/DAOS Solution Tops Latest IO500

August 11, 2020

Intel’s persistent memory technology, Optane, and its DAOS (Distributed Asynchronous Object Storage) stack continue to impress and gain market traction. Yesterday, Intel reported an Optane and DAOS-based system finishe Read more…

By John Russell

Summit Now Offers Virtual Tours

August 10, 2020

Summit, the second most powerful publicly ranked supercomputer in the world, now has a virtual tour. The tour, implemented by 3D platform Matterport, allows users to virtually “walk” around the massive supercomputer Read more…

By Oliver Peckham

Supercomputer Simulations Examine Changes in Chesapeake Bay

August 8, 2020

The Chesapeake Bay, the largest estuary in the continental United States, weaves its way south from Maryland, collecting waters from West Virginia, Delaware, DC, Pennsylvania and New York along the way. Like many major e Read more…

By Oliver Peckham

Student Success from ‘Scratch’: CHPC’s Proof is in the Pudding

August 7, 2020

Happy Sithole, who directs the South African Centre for High Performance Computing (SA-CHPC), called the 13th annual CHPC National conference to order on December 1, 2019, at the Birchwood Conference Centre in Kempton Pa Read more…

By Elizabeth Leake

AWS Solution Channel

University of Adelaide Provides Seamless Bioinformatics Training Using AWS

The University of Adelaide, established in South Australia in 1874, maintains a rich history of scientific innovation. For more than 140 years, the institution and its researchers have had an impact all over the world—making vital contributions to the invention of X-ray crystallography, insulin, penicillin, and the Olympic torch. Read more…

Intel® HPC + AI Pavilion

Supercomputing the Pandemic: Scientific Community Tackles COVID-19 from Multiple Perspectives

Since their inception, supercomputers have taken on the biggest, most complex, and most data-intensive computing challenges—from confirming Einstein’s theories about gravitational waves to predicting the impacts of climate change. Read more…

New GE Simulations on Summit to Advance Offshore Wind Power

August 6, 2020

The wind energy sector is a frequent user of high-power simulations, with researchers aiming to optimize wind flows and energy production from the massive turbines. Now, researchers at GE are preparing to undertake a lar Read more…

By Oliver Peckham

Intel Speeds NAMD by 1.8x: Saves Xeon Processor Users Millions of Compute Hours

August 12, 2020

Potentially saving datacenters millions of CPU node hours, Intel and the University of Illinois at Urbana–Champaign (UIUC) have collaborated to develop AVX-51 Read more…

By Rob Farber

Intel’s Optane/DAOS Solution Tops Latest IO500

August 11, 2020

Intel’s persistent memory technology, Optane, and its DAOS (Distributed Asynchronous Object Storage) stack continue to impress and gain market traction. Yeste Read more…

By John Russell

Summit Now Offers Virtual Tours

August 10, 2020

Summit, the second most powerful publicly ranked supercomputer in the world, now has a virtual tour. The tour, implemented by 3D platform Matterport, allows use Read more…

By Oliver Peckham

Research: A Survey of Numerical Methods Utilizing Mixed Precision Arithmetic

August 5, 2020

Within the past years, hardware vendors have started designing low precision special function units in response to the demand of the machine learning community Read more…

By Hartwig Anzt and Jack Dongarra

Implement Photonic Tensor Cores for Machine Learning?

August 5, 2020

Researchers from George Washington University have reported an approach for building photonic tensor cores that leverages phase change photonic memory to implem Read more…

By John Russell

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

Machines, Connections, Data, and Especially People: OAC Acting Director Amy Friedlander Charts Office’s Blueprint for Innovation

August 3, 2020

The path to innovation in cyberinfrastructure (CI) will require continued focus on building HPC systems and secure connections between them, in addition to the Read more…

By Ken Chiacchia, Pittsburgh Supercomputing Center/XSEDE

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

Leading Solution Providers

Contributors

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Joliot-Curie Supercomputer Used to Build First Full, High-Fidelity Aircraft Engine Simulation

July 14, 2020

When industrial designers plan the design of a new element of a vehicle’s propulsion or exterior, they typically use fluid dynamics to optimize airflow and in Read more…

By Oliver Peckham

John Martinis Reportedly Leaves Google Quantum Effort

April 21, 2020

John Martinis, who led Google’s quantum computing effort since establishing its quantum hardware group in 2014, has left Google after being moved into an advi Read more…

By John Russell

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This