SC13 Research Highlight: There Goes the Performance Neighborhood…

By Drs. Abhinav Bhatele, Kathryn Mohror, Steven Langer & Katherine Isaacs

November 16, 2013

Message passing can take up a significant fraction of the run time for massively parallel science simulation codes. Consistently high message passing rates are required for these codes to deliver good performance. At Supercomputing 2013 (SC13), our research team from Lawrence Livermore (LLNL) will present the results of our study that show that run-to-run variability in message passing rates can reduce throughput by 30% or more due to contention with other jobs for the network links.

Performance variability can result in individual jobs running slower, which in turn can lead to a longer wait for the science results and increase the waiting time in the queue for other jobs.  Reducing such variability could improve overall throughput at a computer center and save energy costs.  Performance variability also impacts the development cycle for high-performance computing (HPC) applications. It can complicate tasks such as: debugging performance issues in an application code, quantifying the effects of code changes on performance, measuring the effects of compiler or system software changes, and determining how much time to request for a batch job. Thus, we set out to investigate the possible sources of such performance variability on supercomputer systems.

In our study, we focused on pF3D, a code that simulates laser-plasma interactions in experiments at the National Ignition Facility at LLNL.  In 2011, we began doing production runs of pF3D on Cielo, a 1.37 Petaflop/s Cray XE6 system installed at Los Alamos. Concurrently, we ran pF3D on Dawn, an IBM Blue Gene/P system at LLNL. The run times of identical jobs on Cielo varied by 20% while there was very little variability on Dawn. The differences in run time were due to varying message passing rates. These early results prompted us to do a systematic study of message rate variability on three U.S.  Department of Energy (DOE) supercomputers: Intrepid, an IBM Blue Gene/P at Argonne (ANL), Mira, an IBM Blue Gene/Q at Argonne, and Hopper, a Cray XE6 at Lawrence Berkeley (LBNL).

Over the course of forty-five days, we submitted a short benchmarking run of pF3D every day to record the performance behavior of the application and some information about the system state, including the shape of the job partition allocated to the job, and other jobs running on the system and their node allocations. The “shape” of the job partition refers to the physical locations of the allocated nodes in the interconnect topology of the system.  Mira has a five-dimensional torus interconnect while Hopper and Intrepid have a three-dimensional torus interconnect. Below, we show a plot of the average messaging rate for each job as a function of when it was run on the three systems.  We compute the average messaging rate by dividing the total volume of communication in bytes by the total time spent in sending the messages over the network.

AbRevise

Click to enlarge

We see that on the IBM systems, Intrepid and Mira, there is negligible variation in the messaging performance. However, on the Cray system (Hopper), the slowest job on any given day may run at half the speed of the fastest job. Application users choose the amount of work to assign to each batch job to ensure that there is sufficient time to save results even on a day with poor performance.  This results in less average work completed per batch job than on a system with repeatable performance and the need for more batch job slots (and more calendar days) to complete a simulation.

In this SC13 paper (presentation schedule below), we attempt to narrow down the root causes of this performance variability on Hopper.  Several factors can make the performance of an application variable within and across batch jobs. These factors include noise from operating system (OS) daemons, communication variability arising from the shape of the allocated partition, and interference from other jobs sharing the same network links.  Below, we present observational evidence that indicates which factor leads to the highest performance variability. We show the placement of pF3D (blue) and conflicting jobs (other colors) on Hopper for two separate short runs in the figure below. The job from April 11 (left) yielded a messaging rate nearly 25% below that of the job run on April 16 (right). The two jobs had the same node placement, but the slower April 11 job was surrounded by several other jobs, including a large communication-heavy job (green).  More detailed analysis that provides stronger evidence for the effect of inter-job interference on performance can be found in the paper.

same-shape-different-rates

Acknowledgement: This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work was funded by the Laboratory Directed Research and Development Program at LLNL under project tracking codes 13-ERD-055 and 13-FS-002 (LLNL-MI-645823).

Read more about this research at https://computation-rnd.llnl.gov/extreme-computing/interconnection-networks.php

Presentation Schedule:

Authors: Abhinav Bhatele, Kathryn Mohror, Steven H. Langer, Katherine E. Isaacs

Day: Tuesday (November 19, 2013)

Time: 4:00 – 4:30 PM

Location: 401/402/403

About the Authors

bhateleDr. Abhinav Bhatele is a computer scientist in the Center for Applied Scientific Computing at Lawrence Livermore National Laboratory. His interests lie in performance optimizations through analysis, visualization and tuning and developing algorithms for high-end parallel systems.

 

mahKathryn Mohror is a computer scientist at Lawrence Livermore National Laboratory (LLNL). She is a member of the Scalability Team at LLNL and her research on high-end computing systems is currently focused on scalable fault tolerant computing and performance measurement and analysis.
Steven Langer is currently a computational physicist at Lawrence Livermore National Laboratory. His research interests include inertial confinement fusion, performance analysis of HPC applications, scalability of message passing and I/O in applications, and understanding how to modify multi-physics simulation codes to run efficiently on upcoming exascale hardware.
Katherine Isaacs is a graduate student at the University of California, Davis. Her research focuses on information visualization techniques for performance analysis.
Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as tech giants jockey to establish a pole position in the race toward commercialization of quantum. This week, Microsoft took the next step in advanci Read more…

By Tiffany Trader

ESnet Now Moving More Than 1 Petabyte/wk

December 12, 2017

Optimizing ESnet (Energy Sciences Network), the world's fastest network for science, is an ongoing process. Recently a two-year collaboration by ESnet users – the Petascale DTN Project – achieved its ambitious goal t Read more…

HPC-as-a-Service Finds Toehold in Iceland

December 11, 2017

While high-demand workloads (e.g., bitcoin mining) can overheat data center cooling capabilities, at least one data center infrastructure provider has announced an HPC-as-a-service offering that features 100 percent fre Read more…

By Doug Black

HPE Extreme Performance Solutions

Explore the Origins of Space with COSMOS and Memory-Driven Computing

From the formation of black holes to the origins of space, data is the key to unlocking the secrets of the early universe. Read more…

HPC Iron, Soft, Data, People – It Takes an Ecosystem!

December 11, 2017

Cutting edge advanced computing hardware (aka big iron) does not stand by itself. These computers are the pinnacle of a myriad of technologies that must be carefully woven together by people to create the computational c Read more…

By Alex R. Larzelere

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as tech giants jockey to establish a pole position in the race toward commercialization of Read more…

By Tiffany Trader

HPC Iron, Soft, Data, People – It Takes an Ecosystem!

December 11, 2017

Cutting edge advanced computing hardware (aka big iron) does not stand by itself. These computers are the pinnacle of a myriad of technologies that must be care Read more…

By Alex R. Larzelere

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Microsoft Spins Cycle Computing into Core Azure Product

December 5, 2017

Last August, cloud giant Microsoft acquired HPC cloud orchestration pioneer Cycle Computing. Since then the focus has been on integrating Cycle’s organization Read more…

By John Russell

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPE In-Memory Platform Comes to COSMOS

November 30, 2017

Hewlett Packard Enterprise is on a mission to accelerate space research. In August, it sent the first commercial-off-the-shelf HPC system into space for testing Read more…

By Tiffany Trader

SC17 Cluster Competition: Who Won and Why? Results Analyzed and Over-Analyzed

November 28, 2017

Everyone by now knows that Nanyang Technological University of Singapore (NTU) took home the highest LINPACK Award and the Overall Championship from the recently concluded SC17 Student Cluster Competition. We also already know how the teams did in the Highest LINPACK and Highest HPCG competitions, with Nanyang grabbing bragging rights for both benchmarks. Read more…

By Dan Olds

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Leading Solution Providers

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This