SC13 Research Highlight: There Goes the Performance Neighborhood…

By Drs. Abhinav Bhatele, Kathryn Mohror, Steven Langer & Katherine Isaacs

November 16, 2013

Message passing can take up a significant fraction of the run time for massively parallel science simulation codes. Consistently high message passing rates are required for these codes to deliver good performance. At Supercomputing 2013 (SC13), our research team from Lawrence Livermore (LLNL) will present the results of our study that show that run-to-run variability in message passing rates can reduce throughput by 30% or more due to contention with other jobs for the network links.

Performance variability can result in individual jobs running slower, which in turn can lead to a longer wait for the science results and increase the waiting time in the queue for other jobs.  Reducing such variability could improve overall throughput at a computer center and save energy costs.  Performance variability also impacts the development cycle for high-performance computing (HPC) applications. It can complicate tasks such as: debugging performance issues in an application code, quantifying the effects of code changes on performance, measuring the effects of compiler or system software changes, and determining how much time to request for a batch job. Thus, we set out to investigate the possible sources of such performance variability on supercomputer systems.

In our study, we focused on pF3D, a code that simulates laser-plasma interactions in experiments at the National Ignition Facility at LLNL.  In 2011, we began doing production runs of pF3D on Cielo, a 1.37 Petaflop/s Cray XE6 system installed at Los Alamos. Concurrently, we ran pF3D on Dawn, an IBM Blue Gene/P system at LLNL. The run times of identical jobs on Cielo varied by 20% while there was very little variability on Dawn. The differences in run time were due to varying message passing rates. These early results prompted us to do a systematic study of message rate variability on three U.S.  Department of Energy (DOE) supercomputers: Intrepid, an IBM Blue Gene/P at Argonne (ANL), Mira, an IBM Blue Gene/Q at Argonne, and Hopper, a Cray XE6 at Lawrence Berkeley (LBNL).

Over the course of forty-five days, we submitted a short benchmarking run of pF3D every day to record the performance behavior of the application and some information about the system state, including the shape of the job partition allocated to the job, and other jobs running on the system and their node allocations. The “shape” of the job partition refers to the physical locations of the allocated nodes in the interconnect topology of the system.  Mira has a five-dimensional torus interconnect while Hopper and Intrepid have a three-dimensional torus interconnect. Below, we show a plot of the average messaging rate for each job as a function of when it was run on the three systems.  We compute the average messaging rate by dividing the total volume of communication in bytes by the total time spent in sending the messages over the network.

AbRevise

Click to enlarge

We see that on the IBM systems, Intrepid and Mira, there is negligible variation in the messaging performance. However, on the Cray system (Hopper), the slowest job on any given day may run at half the speed of the fastest job. Application users choose the amount of work to assign to each batch job to ensure that there is sufficient time to save results even on a day with poor performance.  This results in less average work completed per batch job than on a system with repeatable performance and the need for more batch job slots (and more calendar days) to complete a simulation.

In this SC13 paper (presentation schedule below), we attempt to narrow down the root causes of this performance variability on Hopper.  Several factors can make the performance of an application variable within and across batch jobs. These factors include noise from operating system (OS) daemons, communication variability arising from the shape of the allocated partition, and interference from other jobs sharing the same network links.  Below, we present observational evidence that indicates which factor leads to the highest performance variability. We show the placement of pF3D (blue) and conflicting jobs (other colors) on Hopper for two separate short runs in the figure below. The job from April 11 (left) yielded a messaging rate nearly 25% below that of the job run on April 16 (right). The two jobs had the same node placement, but the slower April 11 job was surrounded by several other jobs, including a large communication-heavy job (green).  More detailed analysis that provides stronger evidence for the effect of inter-job interference on performance can be found in the paper.

same-shape-different-rates

Acknowledgement: This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work was funded by the Laboratory Directed Research and Development Program at LLNL under project tracking codes 13-ERD-055 and 13-FS-002 (LLNL-MI-645823).

Read more about this research at https://computation-rnd.llnl.gov/extreme-computing/interconnection-networks.php

Presentation Schedule:

Authors: Abhinav Bhatele, Kathryn Mohror, Steven H. Langer, Katherine E. Isaacs

Day: Tuesday (November 19, 2013)

Time: 4:00 – 4:30 PM

Location: 401/402/403

About the Authors

bhateleDr. Abhinav Bhatele is a computer scientist in the Center for Applied Scientific Computing at Lawrence Livermore National Laboratory. His interests lie in performance optimizations through analysis, visualization and tuning and developing algorithms for high-end parallel systems.

 

mahKathryn Mohror is a computer scientist at Lawrence Livermore National Laboratory (LLNL). She is a member of the Scalability Team at LLNL and her research on high-end computing systems is currently focused on scalable fault tolerant computing and performance measurement and analysis.
Steven Langer is currently a computational physicist at Lawrence Livermore National Laboratory. His research interests include inertial confinement fusion, performance analysis of HPC applications, scalability of message passing and I/O in applications, and understanding how to modify multi-physics simulation codes to run efficiently on upcoming exascale hardware.
Katherine Isaacs is a graduate student at the University of California, Davis. Her research focuses on information visualization techniques for performance analysis.
Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Weekly Twitter Roundup (Feb. 16, 2017)

February 16, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Alexander Named Dep. Dir. of Brookhaven Computational Initiative

February 15, 2017

Francis Alexander, a physicist with extensive management and leadership experience in computational science research, has been named Deputy Director of the Computational Science Initiative at the U.S. Read more…

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This