SC13 Research Highlight: There Goes the Performance Neighborhood…

By Drs. Abhinav Bhatele, Kathryn Mohror, Steven Langer & Katherine Isaacs

November 16, 2013

Message passing can take up a significant fraction of the run time for massively parallel science simulation codes. Consistently high message passing rates are required for these codes to deliver good performance. At Supercomputing 2013 (SC13), our research team from Lawrence Livermore (LLNL) will present the results of our study that show that run-to-run variability in message passing rates can reduce throughput by 30% or more due to contention with other jobs for the network links.

Performance variability can result in individual jobs running slower, which in turn can lead to a longer wait for the science results and increase the waiting time in the queue for other jobs.  Reducing such variability could improve overall throughput at a computer center and save energy costs.  Performance variability also impacts the development cycle for high-performance computing (HPC) applications. It can complicate tasks such as: debugging performance issues in an application code, quantifying the effects of code changes on performance, measuring the effects of compiler or system software changes, and determining how much time to request for a batch job. Thus, we set out to investigate the possible sources of such performance variability on supercomputer systems.

In our study, we focused on pF3D, a code that simulates laser-plasma interactions in experiments at the National Ignition Facility at LLNL.  In 2011, we began doing production runs of pF3D on Cielo, a 1.37 Petaflop/s Cray XE6 system installed at Los Alamos. Concurrently, we ran pF3D on Dawn, an IBM Blue Gene/P system at LLNL. The run times of identical jobs on Cielo varied by 20% while there was very little variability on Dawn. The differences in run time were due to varying message passing rates. These early results prompted us to do a systematic study of message rate variability on three U.S.  Department of Energy (DOE) supercomputers: Intrepid, an IBM Blue Gene/P at Argonne (ANL), Mira, an IBM Blue Gene/Q at Argonne, and Hopper, a Cray XE6 at Lawrence Berkeley (LBNL).

Over the course of forty-five days, we submitted a short benchmarking run of pF3D every day to record the performance behavior of the application and some information about the system state, including the shape of the job partition allocated to the job, and other jobs running on the system and their node allocations. The “shape” of the job partition refers to the physical locations of the allocated nodes in the interconnect topology of the system.  Mira has a five-dimensional torus interconnect while Hopper and Intrepid have a three-dimensional torus interconnect. Below, we show a plot of the average messaging rate for each job as a function of when it was run on the three systems.  We compute the average messaging rate by dividing the total volume of communication in bytes by the total time spent in sending the messages over the network.

AbRevise

Click to enlarge

We see that on the IBM systems, Intrepid and Mira, there is negligible variation in the messaging performance. However, on the Cray system (Hopper), the slowest job on any given day may run at half the speed of the fastest job. Application users choose the amount of work to assign to each batch job to ensure that there is sufficient time to save results even on a day with poor performance.  This results in less average work completed per batch job than on a system with repeatable performance and the need for more batch job slots (and more calendar days) to complete a simulation.

In this SC13 paper (presentation schedule below), we attempt to narrow down the root causes of this performance variability on Hopper.  Several factors can make the performance of an application variable within and across batch jobs. These factors include noise from operating system (OS) daemons, communication variability arising from the shape of the allocated partition, and interference from other jobs sharing the same network links.  Below, we present observational evidence that indicates which factor leads to the highest performance variability. We show the placement of pF3D (blue) and conflicting jobs (other colors) on Hopper for two separate short runs in the figure below. The job from April 11 (left) yielded a messaging rate nearly 25% below that of the job run on April 16 (right). The two jobs had the same node placement, but the slower April 11 job was surrounded by several other jobs, including a large communication-heavy job (green).  More detailed analysis that provides stronger evidence for the effect of inter-job interference on performance can be found in the paper.

same-shape-different-rates

Acknowledgement: This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work was funded by the Laboratory Directed Research and Development Program at LLNL under project tracking codes 13-ERD-055 and 13-FS-002 (LLNL-MI-645823).

Read more about this research at https://computation-rnd.llnl.gov/extreme-computing/interconnection-networks.php

Presentation Schedule:

Authors: Abhinav Bhatele, Kathryn Mohror, Steven H. Langer, Katherine E. Isaacs

Day: Tuesday (November 19, 2013)

Time: 4:00 – 4:30 PM

Location: 401/402/403

About the Authors

bhateleDr. Abhinav Bhatele is a computer scientist in the Center for Applied Scientific Computing at Lawrence Livermore National Laboratory. His interests lie in performance optimizations through analysis, visualization and tuning and developing algorithms for high-end parallel systems.

 

mahKathryn Mohror is a computer scientist at Lawrence Livermore National Laboratory (LLNL). She is a member of the Scalability Team at LLNL and her research on high-end computing systems is currently focused on scalable fault tolerant computing and performance measurement and analysis.
Steven Langer is currently a computational physicist at Lawrence Livermore National Laboratory. His research interests include inertial confinement fusion, performance analysis of HPC applications, scalability of message passing and I/O in applications, and understanding how to modify multi-physics simulation codes to run efficiently on upcoming exascale hardware.
Katherine Isaacs is a graduate student at the University of California, Davis. Her research focuses on information visualization techniques for performance analysis.
Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together about 30 participants from industry, government and academia t Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together ab Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This