SC13 Research Highlight: Large Graph Processing Without the Overhead

By Dr. Ling Liu and Kisung Lee

November 16, 2013

Many real world information networks consist of millions or billions of vertices representing heterogeneous entities and billions or trillions of edges representing heterogeneous types of relationships among entities.

Image Source: Max Delbrück Center for Molecular Medicine

For example, the crawled Web graph is estimated to have more than 20 billions of pages (vertices) with 160 billions hyperlinks (edges). Facebook user community exceeds 1 billion users (vertices) with more than 140 billion friendship relationships (edges) in 2012.  The billion triple challenges from the Semantic Web community have put forward large collection of RDF datasets with hundreds of millions of vertices and billions of edges.

As the size and variety of information networks continue to grow in many science and engineering domains, graph computations often exceed the processing capacity of conventional hardware, software systems and tools for a number of reasons. First, graph data often exhibits higher data correlations through both direct and indirect edges and such high correlation tends to generate large size of intermediate results during graph computations. When the size of intermediate results exceeds the available memory, the out of memory problem is unavoidable. Second, the graph datasets are growing in volume, variety and velocity. The bigger the size of the graphs gets, the worse the performance will be for most of the graph computations. One open challenge in this space is how to effectively partition a large graph to enable efficient parallel processing of complex graph operations.

One of the papers to be presented at the ACM/IEEE SC13 conference, titled “Efficient data partitioning model for heterogeneous graphs in the Cloud”, proposes a flexible graph partitioning framework, called VB-partitioner. This work is co-authored by the doctorate student Kisung Lee and Prof. Dr. Ling Liu from the school of Computer Science at Georgia Institute of Technology. To make parallel graph computations highly efficient, an important design goal of VB-Partitioner is to devise graph partitioning techniques that can effectively minimize the inter-partition communication overhead and maximize the intra-partition computation capacity (local processing).

Concretely, the first prototype of the VB-Partitioner focuses on efficient processing of graph queries, namely finding all the subgraphs matching a given subgraph pattern. VB-Partitioner partitions a large graph in three steps.

  • First, it constructs three types of Vertex Blocks (in-VBs, out-VBs and bi-VBs) to capture the general graph processing locality.  Each vertex block has an anchor vertex.
  • Second, it constructs three types of k-hop Extended Vertex Blocks (in-EVBs, out-EVBs and bi-EVBs) to distribute vertex blocks with better query locality. Each EVB has one anchor vertex. It achieves query locality by employing controlled edge replication. The setting of k is determined by the radius of frequent query graphs in order to ensure that most frequently requested queries can be processed in parallel at all partitions with minimized inter-partition communication overhead.
  • Third, it partitions a graph by grouping its vertex blocks and EVBs to maximize parallelism in graph processing while ensuring load balance, controlled edge replication and fast grouping.

Four techniques are considered and compared in the context of grouping and placement of VBs and EVBs to partitions: random grouping, hash-based grouping, min-cut based grouping and high degree vertex-based grouping.  As an integral part of the VB-Partitioner, a data partition-aware query partitioning model is also developed to handle the cases where the radius of a query is larger than k. The experimental results reported in the paper demonstrate the effectiveness of VB-Partitioner in terms of query processing efficiency, data loading time and partition distribution balance.

Graph computations can be broadly classified into two categories, graph queries that find matching subgraphs of a given pattern and iterative graph algorithms that find clusters, orderings, paths or correlation patterns. The former targets at subgraph matching problems over large static graphs and the later targets at graph inference kernels that traverse the graph by iteratively updating the weight of vertices or edges, such as PageRank, shortest path algorithms, spanning tree algorithms, topological sort, and so forth.

Although the first generation of the VB-Partitioner is tailored primarily for efficient parallel processing of graph queries, the ongoing work on VB-Partitioner includes exploring the feasibility and effectiveness of VB-Partitioner in the context of iterative graph algorithms. For example, to minimize inter-partition communications and maximize parallelism in graph computation, it is crucial to optimize the shared memory by minimizing parallel overhead of synchronization barriers. It is equally important to optimize the distributed memory by bounding message buffer sizes, bundling messages, overlapping communication with computation to amortize the overhead of barriers.

image1
Image Source: Giot et al., “A Protein Interaction Map of Drosophila melanogaster”, Science 302, 1722-1736, 2003.”

In addition to exploring parallel computation opportunities through graph partitioning using multi-threads, multi-cores, multiple workers, one can also exploit and combine with other performance optimization techniques to scale large graph analytics. Example techniques include

  • Compression to provide compact storage and in-memory processing,
  • Data placements on disk and in memory to balance computation with storage, and to maximize sequential access and minimize random access,
  • Indexing at vertex and/or edge level to utilize sequential access and minimize unnecessary random access,
  • Caching at vertex, edge or query level to gain performance for repeated access.

Please come hear more on Tuesday, November 19, 2013 10:30AM – 11:00AM (Location: Room 205/207)

http://sc13.supercomputing.org/schedule/event_detail.php?evid=pap708

About the Authors

LingLing Liu is a Professor in the School of Computer Science at Georgia Institute of Technology. She directs the research programs in Distributed Data Intensive Systems Lab (DiSL), examining various aspects of large scale data intensive systems. Prof. Ling Liu is an internationally recognized expert in the areas of Cloud computing, Distributed Computing, Big Data technologies, Database systems and Service oriented computing. Prof. Liu is a recipient of IEEE Computer Society Technical Achievement Award in 2012. Currently Prof. Liu is the editor in chief of IEEE Transactions on Service Computing, and serves on the editorial board of half dozen international journals, including Journal of Parallel and Distributed Computing (JPDC), ACM Transactions on Internet Technology (TOIT), ACM Transactions on Web (TWEB). Dr. Liu’s current research is primarily sponsored by NSF, IBM, and Intel.

 

luiKisung Lee is a Ph.D student in the School of Computer Science at Georgia Tech. He received his BS and MS degree in computer science from KAIST in 2005 and 2007 respectively. He had worked for ETRI as a researcher from 2007 to 2010. He is conducting research in distributed and parallel processing of big data in the Cloud, mobile computing and social network analysis.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Quantum Watchers – Terrific Interview with Caltech’s John Preskill by CERN

July 17, 2024

In case you missed it, there's a fascinating interview with John Preskill, the prominent Caltech physicist and pioneering quantum computing researcher that was recently posted by CERN’s department of experimental physi Read more…

Aurora AI-Driven Atmosphere Model is 5,000x Faster Than Traditional Systems

July 16, 2024

While the onset of human-driven climate change brings with it many horrors, the increase in the frequency and strength of storms poses an enormous threat to communities across the globe. As climate change is warming ocea Read more…

Researchers Say Memory Bandwidth and NVLink Speeds in Hopper Not So Simple

July 15, 2024

Researchers measured the real-world bandwidth of Nvidia's Grace Hopper superchip, with the chip-to-chip interconnect results falling well short of theoretical claims. A paper published on July 10 by researchers in the U. Read more…

Belt-Tightening in Store for Most Federal FY25 Science Budets

July 15, 2024

If it’s summer, it’s federal budgeting time, not to mention an election year as well. There’s an excellent summary of the curent state of FY25 efforts reported in AIP’s policy FYI: Science Policy News. Belt-tight Read more…

Peter Shor Wins IEEE 2025 Shannon Award

July 15, 2024

Peter Shor, the MIT mathematician whose ‘Shor’s algorithm’ sent shivers of fear through the encryption community and helped galvanize ongoing efforts to build quantum computers, has been named the 2025 winner of th Read more…

Weekly Wire Roundup: July 8-July 12, 2024

July 12, 2024

HPC news can get pretty sleepy in June and July, but this week saw a bump in activity midweek as Americans realized they still had work to do after the previous holiday weekend. The world outside the United States also s Read more…

Aurora AI-Driven Atmosphere Model is 5,000x Faster Than Traditional Systems

July 16, 2024

While the onset of human-driven climate change brings with it many horrors, the increase in the frequency and strength of storms poses an enormous threat to com Read more…

Shutterstock 1886124835

Researchers Say Memory Bandwidth and NVLink Speeds in Hopper Not So Simple

July 15, 2024

Researchers measured the real-world bandwidth of Nvidia's Grace Hopper superchip, with the chip-to-chip interconnect results falling well short of theoretical c Read more…

Shutterstock 2203611339

NSF Issues Next Solicitation and More Detail on National Quantum Virtual Laboratory

July 10, 2024

After percolating for roughly a year, NSF has issued the next solicitation for the National Quantum Virtual Lab program — this one focused on design and imple Read more…

NCSA’s SEAS Team Keeps APACE of AlphaFold2

July 9, 2024

High-performance computing (HPC) can often be challenging for researchers to use because it requires expertise in working with large datasets, scaling the softw Read more…

Anders Jensen on Europe’s Plan for AI-optimized Supercomputers, Welcoming the UK, and More

July 8, 2024

The recent ISC24 conference in Hamburg showcased LUMI and other leadership-class supercomputers co-funded by the EuroHPC Joint Undertaking (JU), including three Read more…

Generative AI to Account for 1.5% of World’s Power Consumption by 2029

July 8, 2024

Generative AI will take on a larger chunk of the world's power consumption to keep up with the hefty hardware requirements to run applications. "AI chips repres Read more…

US Senators Propose $32 Billion in Annual AI Spending, but Critics Remain Unconvinced

July 5, 2024

Senate leader, Chuck Schumer, and three colleagues want the US government to spend at least $32 billion annually by 2026 for non-defense related AI systems.  T Read more…

Point and Click HPC: High-Performance Desktops

July 3, 2024

Recently, an interesting paper appeared on Arvix called Use Cases for High-Performance Research Desktops. To be clear, the term desktop in this context does not Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

Everyone Except Nvidia Forms Ultra Accelerator Link (UALink) Consortium

May 30, 2024

Consider the GPU. An island of SIMD greatness that makes light work of matrix math. Originally designed to rapidly paint dots on a computer monitor, it was then Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock_1687123447

Nvidia Economics: Make $5-$7 for Every $1 Spent on GPUs

June 30, 2024

Nvidia is saying that companies could make $5 to $7 for every $1 invested in GPUs over a four-year period. Customers are investing billions in new Nvidia hardwa Read more…

Nvidia Shipped 3.76 Million Data-center GPUs in 2023, According to Study

June 10, 2024

Nvidia had an explosive 2023 in data-center GPU shipments, which totaled roughly 3.76 million units, according to a study conducted by semiconductor analyst fir Read more…

AMD Clears Up Messy GPU Roadmap, Upgrades Chips Annually

June 3, 2024

In the world of AI, there's a desperate search for an alternative to Nvidia's GPUs, and AMD is stepping up to the plate. AMD detailed its updated GPU roadmap, w Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

Intel’s Next-gen Falcon Shores Coming Out in Late 2025 

April 30, 2024

It's a long wait for customers hanging on for Intel's next-generation GPU, Falcon Shores, which will be released in late 2025.  "Then we have a rich, a very Read more…

Leading Solution Providers

Contributors

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's l Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

IonQ Plots Path to Commercial (Quantum) Advantage

July 2, 2024

IonQ, the trapped ion quantum computing specialist, delivered a progress report last week firming up 2024/25 product goals and reviewing its technology roadmap. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire