SC13 Research Highlight: Large Graph Processing Without the Overhead

By Dr. Ling Liu and Kisung Lee

November 16, 2013

Many real world information networks consist of millions or billions of vertices representing heterogeneous entities and billions or trillions of edges representing heterogeneous types of relationships among entities.

Image Source: Max Delbrück Center for Molecular Medicine

For example, the crawled Web graph is estimated to have more than 20 billions of pages (vertices) with 160 billions hyperlinks (edges). Facebook user community exceeds 1 billion users (vertices) with more than 140 billion friendship relationships (edges) in 2012.  The billion triple challenges from the Semantic Web community have put forward large collection of RDF datasets with hundreds of millions of vertices and billions of edges.

As the size and variety of information networks continue to grow in many science and engineering domains, graph computations often exceed the processing capacity of conventional hardware, software systems and tools for a number of reasons. First, graph data often exhibits higher data correlations through both direct and indirect edges and such high correlation tends to generate large size of intermediate results during graph computations. When the size of intermediate results exceeds the available memory, the out of memory problem is unavoidable. Second, the graph datasets are growing in volume, variety and velocity. The bigger the size of the graphs gets, the worse the performance will be for most of the graph computations. One open challenge in this space is how to effectively partition a large graph to enable efficient parallel processing of complex graph operations.

One of the papers to be presented at the ACM/IEEE SC13 conference, titled “Efficient data partitioning model for heterogeneous graphs in the Cloud”, proposes a flexible graph partitioning framework, called VB-partitioner. This work is co-authored by the doctorate student Kisung Lee and Prof. Dr. Ling Liu from the school of Computer Science at Georgia Institute of Technology. To make parallel graph computations highly efficient, an important design goal of VB-Partitioner is to devise graph partitioning techniques that can effectively minimize the inter-partition communication overhead and maximize the intra-partition computation capacity (local processing).

Concretely, the first prototype of the VB-Partitioner focuses on efficient processing of graph queries, namely finding all the subgraphs matching a given subgraph pattern. VB-Partitioner partitions a large graph in three steps.

  • First, it constructs three types of Vertex Blocks (in-VBs, out-VBs and bi-VBs) to capture the general graph processing locality.  Each vertex block has an anchor vertex.
  • Second, it constructs three types of k-hop Extended Vertex Blocks (in-EVBs, out-EVBs and bi-EVBs) to distribute vertex blocks with better query locality. Each EVB has one anchor vertex. It achieves query locality by employing controlled edge replication. The setting of k is determined by the radius of frequent query graphs in order to ensure that most frequently requested queries can be processed in parallel at all partitions with minimized inter-partition communication overhead.
  • Third, it partitions a graph by grouping its vertex blocks and EVBs to maximize parallelism in graph processing while ensuring load balance, controlled edge replication and fast grouping.

Four techniques are considered and compared in the context of grouping and placement of VBs and EVBs to partitions: random grouping, hash-based grouping, min-cut based grouping and high degree vertex-based grouping.  As an integral part of the VB-Partitioner, a data partition-aware query partitioning model is also developed to handle the cases where the radius of a query is larger than k. The experimental results reported in the paper demonstrate the effectiveness of VB-Partitioner in terms of query processing efficiency, data loading time and partition distribution balance.

Graph computations can be broadly classified into two categories, graph queries that find matching subgraphs of a given pattern and iterative graph algorithms that find clusters, orderings, paths or correlation patterns. The former targets at subgraph matching problems over large static graphs and the later targets at graph inference kernels that traverse the graph by iteratively updating the weight of vertices or edges, such as PageRank, shortest path algorithms, spanning tree algorithms, topological sort, and so forth.

Although the first generation of the VB-Partitioner is tailored primarily for efficient parallel processing of graph queries, the ongoing work on VB-Partitioner includes exploring the feasibility and effectiveness of VB-Partitioner in the context of iterative graph algorithms. For example, to minimize inter-partition communications and maximize parallelism in graph computation, it is crucial to optimize the shared memory by minimizing parallel overhead of synchronization barriers. It is equally important to optimize the distributed memory by bounding message buffer sizes, bundling messages, overlapping communication with computation to amortize the overhead of barriers.

image1
Image Source: Giot et al., “A Protein Interaction Map of Drosophila melanogaster”, Science 302, 1722-1736, 2003.”

In addition to exploring parallel computation opportunities through graph partitioning using multi-threads, multi-cores, multiple workers, one can also exploit and combine with other performance optimization techniques to scale large graph analytics. Example techniques include

  • Compression to provide compact storage and in-memory processing,
  • Data placements on disk and in memory to balance computation with storage, and to maximize sequential access and minimize random access,
  • Indexing at vertex and/or edge level to utilize sequential access and minimize unnecessary random access,
  • Caching at vertex, edge or query level to gain performance for repeated access.

Please come hear more on Tuesday, November 19, 2013 10:30AM – 11:00AM (Location: Room 205/207)

http://sc13.supercomputing.org/schedule/event_detail.php?evid=pap708

About the Authors

LingLing Liu is a Professor in the School of Computer Science at Georgia Institute of Technology. She directs the research programs in Distributed Data Intensive Systems Lab (DiSL), examining various aspects of large scale data intensive systems. Prof. Ling Liu is an internationally recognized expert in the areas of Cloud computing, Distributed Computing, Big Data technologies, Database systems and Service oriented computing. Prof. Liu is a recipient of IEEE Computer Society Technical Achievement Award in 2012. Currently Prof. Liu is the editor in chief of IEEE Transactions on Service Computing, and serves on the editorial board of half dozen international journals, including Journal of Parallel and Distributed Computing (JPDC), ACM Transactions on Internet Technology (TOIT), ACM Transactions on Web (TWEB). Dr. Liu’s current research is primarily sponsored by NSF, IBM, and Intel.

 

luiKisung Lee is a Ph.D student in the School of Computer Science at Georgia Tech. He received his BS and MS degree in computer science from KAIST in 2005 and 2007 respectively. He had worked for ETRI as a researcher from 2007 to 2010. He is conducting research in distributed and parallel processing of big data in the Cloud, mobile computing and social network analysis.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Weekly Twitter Roundup (Jan. 12, 2017)

January 12, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

NSF Seeks Input on Cyberinfrastructure Advances Needed

January 12, 2017

In cased you missed it, the National Science Foundation posted a “Dear Colleague Letter” (DCL) late last week seeking input on needs for the next generation of cyberinfrastructure to support science and engineering. Read more…

By John Russell

NSF Approves Bridges Phase 2 Upgrade for Broader Research Use

January 12, 2017

The recently completed phase 2 upgrade of the Bridges supercomputer at the Pittsburgh Supercomputing Center (PSC) has been approved by the National Science Foundation (NSF) making it now available for research allocations to the national scientific community, according to an announcement posted this week on the XSEDE web site. Read more…

By John Russell

Clemson Software Optimizes Big Data Transfers

January 11, 2017

Data-intensive science is not a new phenomenon as the high-energy physics and astrophysics communities can certainly attest, but today more and more scientists are facing steep data and throughput challenges fueled by soaring data volumes and the demands of global-scale collaboration. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Remote Visualization: An Integral Technology for Upstream Oil & Gas

As the exploration and production (E&P) of natural resources evolves into an even more complex and vital task, visualization technology has become integral for the upstream oil and gas industry. Read more…

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

UberCloud Cites Progress in HPC Cloud Computing

January 10, 2017

200 HPC cloud experiments, 80 case studies, and a ton of hands-on experience gained, that’s the harvest of four years of UberCloud HPC Experiments. Read more…

By Wolfgang Gentzsch and Burak Yenier

A Conversation with Women in HPC Director Toni Collis

January 6, 2017

In this SC16 video interview, HPCwire Managing Editor Tiffany Trader sits down with Toni Collis, the director and founder of the Women in HPC (WHPC) network, to discuss the strides made since the organization’s debut in 2014. Read more…

By Tiffany Trader

FPGA-Based Genome Processor Bundles Storage

January 6, 2017

Bio-processor developer Edico Genome is collaborating with storage specialist Dell EMC to bundle computing and storage for analyzing gene-sequencing data. Read more…

By George Leopold

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

UberCloud Cites Progress in HPC Cloud Computing

January 10, 2017

200 HPC cloud experiments, 80 case studies, and a ton of hands-on experience gained, that’s the harvest of four years of UberCloud HPC Experiments. Read more…

By Wolfgang Gentzsch and Burak Yenier

A Conversation with Women in HPC Director Toni Collis

January 6, 2017

In this SC16 video interview, HPCwire Managing Editor Tiffany Trader sits down with Toni Collis, the director and founder of the Women in HPC (WHPC) network, to discuss the strides made since the organization’s debut in 2014. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Fast Rewind: 2016 Was a Wild Ride for HPC

December 23, 2016

Some years quietly sneak by – 2016 not so much. It’s safe to say there are always forces reshaping the HPC landscape but this year’s bunch seemed like a noisy lot. Among the noisemakers: TaihuLight, DGX-1/Pascal, Dell EMC & HPE-SGI et al., KNL to market, OPA-IB chest thumping, Fujitsu-ARM, new U.S. President-elect, BREXIT, JR’s Intel Exit, Exascale (whatever that means now), NCSA@30, whither NSCI, Deep Learning mania, HPC identity crisis…You get the picture. Read more…

By John Russell

AWI Uses New Cray Cluster for Earth Sciences and Bioinformatics

December 22, 2016

The Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), headquartered in Bremerhaven, Germany, is one of the country's premier research institutes within the Helmholtz Association of German Research Centres, and is an internationally respected center of expertise for polar and marine research. In November 2015, AWI awarded Cray a contract to install a cluster supercomputer that would help the institute accelerate time to discovery. Now the effort is starting to pay off. Read more…

By Linda Barney

Addison Snell: The ‘Wild West’ of HPC Disaggregation

December 16, 2016

We caught up with Addison Snell, CEO of HPC industry watcher Intersect360, at SC16 last month, and Snell had his expected, extensive list of insights into trends driving advanced-scale technology in both the commercial and research sectors. Read more…

By Doug Black

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Leading Solution Providers

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

New Genomics Pipeline Combines AWS, Local HPC, and Supercomputing

September 22, 2016

Declining DNA sequencing costs and the rush to do whole genome sequencing (WGS) of large cohort populations – think 5000 subjects now, but many more thousands soon – presents a formidable computational challenge to researchers attempting to make sense of large cohort datasets. Read more…

By John Russell

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Deep Learning Paves Way for Better Diagnostics

September 19, 2016

Stanford researchers are leveraging GPU-based machines in the Amazon EC2 cloud to run deep learning workloads with the goal of improving diagnostics for a chronic eye disease, called diabetic retinopathy. The disease is a complication of diabetes that can lead to blindness if blood sugar is poorly controlled. It affects about 45 percent of diabetics and 100 million people worldwide, many in developing nations. Read more…

By Tiffany Trader

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This