SC13 Research Highlight: Large Graph Processing Without the Overhead

By Dr. Ling Liu and Kisung Lee

November 16, 2013

Many real world information networks consist of millions or billions of vertices representing heterogeneous entities and billions or trillions of edges representing heterogeneous types of relationships among entities.

Image Source: Max Delbrück Center for Molecular Medicine

For example, the crawled Web graph is estimated to have more than 20 billions of pages (vertices) with 160 billions hyperlinks (edges). Facebook user community exceeds 1 billion users (vertices) with more than 140 billion friendship relationships (edges) in 2012.  The billion triple challenges from the Semantic Web community have put forward large collection of RDF datasets with hundreds of millions of vertices and billions of edges.

As the size and variety of information networks continue to grow in many science and engineering domains, graph computations often exceed the processing capacity of conventional hardware, software systems and tools for a number of reasons. First, graph data often exhibits higher data correlations through both direct and indirect edges and such high correlation tends to generate large size of intermediate results during graph computations. When the size of intermediate results exceeds the available memory, the out of memory problem is unavoidable. Second, the graph datasets are growing in volume, variety and velocity. The bigger the size of the graphs gets, the worse the performance will be for most of the graph computations. One open challenge in this space is how to effectively partition a large graph to enable efficient parallel processing of complex graph operations.

One of the papers to be presented at the ACM/IEEE SC13 conference, titled “Efficient data partitioning model for heterogeneous graphs in the Cloud”, proposes a flexible graph partitioning framework, called VB-partitioner. This work is co-authored by the doctorate student Kisung Lee and Prof. Dr. Ling Liu from the school of Computer Science at Georgia Institute of Technology. To make parallel graph computations highly efficient, an important design goal of VB-Partitioner is to devise graph partitioning techniques that can effectively minimize the inter-partition communication overhead and maximize the intra-partition computation capacity (local processing).

Concretely, the first prototype of the VB-Partitioner focuses on efficient processing of graph queries, namely finding all the subgraphs matching a given subgraph pattern. VB-Partitioner partitions a large graph in three steps.

  • First, it constructs three types of Vertex Blocks (in-VBs, out-VBs and bi-VBs) to capture the general graph processing locality.  Each vertex block has an anchor vertex.
  • Second, it constructs three types of k-hop Extended Vertex Blocks (in-EVBs, out-EVBs and bi-EVBs) to distribute vertex blocks with better query locality. Each EVB has one anchor vertex. It achieves query locality by employing controlled edge replication. The setting of k is determined by the radius of frequent query graphs in order to ensure that most frequently requested queries can be processed in parallel at all partitions with minimized inter-partition communication overhead.
  • Third, it partitions a graph by grouping its vertex blocks and EVBs to maximize parallelism in graph processing while ensuring load balance, controlled edge replication and fast grouping.

Four techniques are considered and compared in the context of grouping and placement of VBs and EVBs to partitions: random grouping, hash-based grouping, min-cut based grouping and high degree vertex-based grouping.  As an integral part of the VB-Partitioner, a data partition-aware query partitioning model is also developed to handle the cases where the radius of a query is larger than k. The experimental results reported in the paper demonstrate the effectiveness of VB-Partitioner in terms of query processing efficiency, data loading time and partition distribution balance.

Graph computations can be broadly classified into two categories, graph queries that find matching subgraphs of a given pattern and iterative graph algorithms that find clusters, orderings, paths or correlation patterns. The former targets at subgraph matching problems over large static graphs and the later targets at graph inference kernels that traverse the graph by iteratively updating the weight of vertices or edges, such as PageRank, shortest path algorithms, spanning tree algorithms, topological sort, and so forth.

Although the first generation of the VB-Partitioner is tailored primarily for efficient parallel processing of graph queries, the ongoing work on VB-Partitioner includes exploring the feasibility and effectiveness of VB-Partitioner in the context of iterative graph algorithms. For example, to minimize inter-partition communications and maximize parallelism in graph computation, it is crucial to optimize the shared memory by minimizing parallel overhead of synchronization barriers. It is equally important to optimize the distributed memory by bounding message buffer sizes, bundling messages, overlapping communication with computation to amortize the overhead of barriers.

image1
Image Source: Giot et al., “A Protein Interaction Map of Drosophila melanogaster”, Science 302, 1722-1736, 2003.”

In addition to exploring parallel computation opportunities through graph partitioning using multi-threads, multi-cores, multiple workers, one can also exploit and combine with other performance optimization techniques to scale large graph analytics. Example techniques include

  • Compression to provide compact storage and in-memory processing,
  • Data placements on disk and in memory to balance computation with storage, and to maximize sequential access and minimize random access,
  • Indexing at vertex and/or edge level to utilize sequential access and minimize unnecessary random access,
  • Caching at vertex, edge or query level to gain performance for repeated access.

Please come hear more on Tuesday, November 19, 2013 10:30AM – 11:00AM (Location: Room 205/207)

http://sc13.supercomputing.org/schedule/event_detail.php?evid=pap708

About the Authors

LingLing Liu is a Professor in the School of Computer Science at Georgia Institute of Technology. She directs the research programs in Distributed Data Intensive Systems Lab (DiSL), examining various aspects of large scale data intensive systems. Prof. Ling Liu is an internationally recognized expert in the areas of Cloud computing, Distributed Computing, Big Data technologies, Database systems and Service oriented computing. Prof. Liu is a recipient of IEEE Computer Society Technical Achievement Award in 2012. Currently Prof. Liu is the editor in chief of IEEE Transactions on Service Computing, and serves on the editorial board of half dozen international journals, including Journal of Parallel and Distributed Computing (JPDC), ACM Transactions on Internet Technology (TOIT), ACM Transactions on Web (TWEB). Dr. Liu’s current research is primarily sponsored by NSF, IBM, and Intel.

 

luiKisung Lee is a Ph.D student in the School of Computer Science at Georgia Tech. He received his BS and MS degree in computer science from KAIST in 2005 and 2007 respectively. He had worked for ETRI as a researcher from 2007 to 2010. He is conducting research in distributed and parallel processing of big data in the Cloud, mobile computing and social network analysis.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Weekly Twitter Roundup (Feb. 16, 2017)

February 16, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Alexander Named Dep. Dir. of Brookhaven Computational Initiative

February 15, 2017

Francis Alexander, a physicist with extensive management and leadership experience in computational science research, has been named Deputy Director of the Computational Science Initiative at the U.S. Read more…

Here’s What a Neural Net Looks Like On the Inside

February 15, 2017

Ever wonder what the inside of a machine learning model looks like? Today Graphcore released fascinating images that show how the computational graph concept maps to a new graph processor and graph programming framework it’s creating. Read more…

By Alex Woodie

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

HPC Cloud Startup Launches ‘App Store’ for HPC Workflows

February 9, 2017

“Civilization advances by extending the number of important operations which we can perform without thinking about them,” Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This