SC13 Research Highlight: Large Graph Processing Without the Overhead

By Dr. Ling Liu and Kisung Lee

November 16, 2013

Many real world information networks consist of millions or billions of vertices representing heterogeneous entities and billions or trillions of edges representing heterogeneous types of relationships among entities.

Image Source: Max Delbrück Center for Molecular Medicine

For example, the crawled Web graph is estimated to have more than 20 billions of pages (vertices) with 160 billions hyperlinks (edges). Facebook user community exceeds 1 billion users (vertices) with more than 140 billion friendship relationships (edges) in 2012.  The billion triple challenges from the Semantic Web community have put forward large collection of RDF datasets with hundreds of millions of vertices and billions of edges.

As the size and variety of information networks continue to grow in many science and engineering domains, graph computations often exceed the processing capacity of conventional hardware, software systems and tools for a number of reasons. First, graph data often exhibits higher data correlations through both direct and indirect edges and such high correlation tends to generate large size of intermediate results during graph computations. When the size of intermediate results exceeds the available memory, the out of memory problem is unavoidable. Second, the graph datasets are growing in volume, variety and velocity. The bigger the size of the graphs gets, the worse the performance will be for most of the graph computations. One open challenge in this space is how to effectively partition a large graph to enable efficient parallel processing of complex graph operations.

One of the papers to be presented at the ACM/IEEE SC13 conference, titled “Efficient data partitioning model for heterogeneous graphs in the Cloud”, proposes a flexible graph partitioning framework, called VB-partitioner. This work is co-authored by the doctorate student Kisung Lee and Prof. Dr. Ling Liu from the school of Computer Science at Georgia Institute of Technology. To make parallel graph computations highly efficient, an important design goal of VB-Partitioner is to devise graph partitioning techniques that can effectively minimize the inter-partition communication overhead and maximize the intra-partition computation capacity (local processing).

Concretely, the first prototype of the VB-Partitioner focuses on efficient processing of graph queries, namely finding all the subgraphs matching a given subgraph pattern. VB-Partitioner partitions a large graph in three steps.

  • First, it constructs three types of Vertex Blocks (in-VBs, out-VBs and bi-VBs) to capture the general graph processing locality.  Each vertex block has an anchor vertex.
  • Second, it constructs three types of k-hop Extended Vertex Blocks (in-EVBs, out-EVBs and bi-EVBs) to distribute vertex blocks with better query locality. Each EVB has one anchor vertex. It achieves query locality by employing controlled edge replication. The setting of k is determined by the radius of frequent query graphs in order to ensure that most frequently requested queries can be processed in parallel at all partitions with minimized inter-partition communication overhead.
  • Third, it partitions a graph by grouping its vertex blocks and EVBs to maximize parallelism in graph processing while ensuring load balance, controlled edge replication and fast grouping.

Four techniques are considered and compared in the context of grouping and placement of VBs and EVBs to partitions: random grouping, hash-based grouping, min-cut based grouping and high degree vertex-based grouping.  As an integral part of the VB-Partitioner, a data partition-aware query partitioning model is also developed to handle the cases where the radius of a query is larger than k. The experimental results reported in the paper demonstrate the effectiveness of VB-Partitioner in terms of query processing efficiency, data loading time and partition distribution balance.

Graph computations can be broadly classified into two categories, graph queries that find matching subgraphs of a given pattern and iterative graph algorithms that find clusters, orderings, paths or correlation patterns. The former targets at subgraph matching problems over large static graphs and the later targets at graph inference kernels that traverse the graph by iteratively updating the weight of vertices or edges, such as PageRank, shortest path algorithms, spanning tree algorithms, topological sort, and so forth.

Although the first generation of the VB-Partitioner is tailored primarily for efficient parallel processing of graph queries, the ongoing work on VB-Partitioner includes exploring the feasibility and effectiveness of VB-Partitioner in the context of iterative graph algorithms. For example, to minimize inter-partition communications and maximize parallelism in graph computation, it is crucial to optimize the shared memory by minimizing parallel overhead of synchronization barriers. It is equally important to optimize the distributed memory by bounding message buffer sizes, bundling messages, overlapping communication with computation to amortize the overhead of barriers.

image1
Image Source: Giot et al., “A Protein Interaction Map of Drosophila melanogaster”, Science 302, 1722-1736, 2003.”

In addition to exploring parallel computation opportunities through graph partitioning using multi-threads, multi-cores, multiple workers, one can also exploit and combine with other performance optimization techniques to scale large graph analytics. Example techniques include

  • Compression to provide compact storage and in-memory processing,
  • Data placements on disk and in memory to balance computation with storage, and to maximize sequential access and minimize random access,
  • Indexing at vertex and/or edge level to utilize sequential access and minimize unnecessary random access,
  • Caching at vertex, edge or query level to gain performance for repeated access.

Please come hear more on Tuesday, November 19, 2013 10:30AM – 11:00AM (Location: Room 205/207)

http://sc13.supercomputing.org/schedule/event_detail.php?evid=pap708

About the Authors

LingLing Liu is a Professor in the School of Computer Science at Georgia Institute of Technology. She directs the research programs in Distributed Data Intensive Systems Lab (DiSL), examining various aspects of large scale data intensive systems. Prof. Ling Liu is an internationally recognized expert in the areas of Cloud computing, Distributed Computing, Big Data technologies, Database systems and Service oriented computing. Prof. Liu is a recipient of IEEE Computer Society Technical Achievement Award in 2012. Currently Prof. Liu is the editor in chief of IEEE Transactions on Service Computing, and serves on the editorial board of half dozen international journals, including Journal of Parallel and Distributed Computing (JPDC), ACM Transactions on Internet Technology (TOIT), ACM Transactions on Web (TWEB). Dr. Liu’s current research is primarily sponsored by NSF, IBM, and Intel.

 

luiKisung Lee is a Ph.D student in the School of Computer Science at Georgia Tech. He received his BS and MS degree in computer science from KAIST in 2005 and 2007 respectively. He had worked for ETRI as a researcher from 2007 to 2010. He is conducting research in distributed and parallel processing of big data in the Cloud, mobile computing and social network analysis.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Machines, Connections, Data, and Especially People: OAC Acting Director Amy Friedlander Charts Office’s Blueprint for Innovation

August 3, 2020

The path to innovation in cyberinfrastructure (CI) will require continued focus on building HPC systems and secure connections between them, in addition to the increasingly important goals of data best practices and work Read more…

By Ken Chiacchia, Pittsburgh Supercomputing Center/XSEDE

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated, analysts said the acquisition would cement Nvidia’s stat Read more…

By George Leopold

Summer Reading: Here’s a Quantum Advantage You Can Bet On!

August 3, 2020

While quantum computing researchers today vigorously chase a demonstration of a quantum advantage – an application which when run on a quantum computer provides sufficient advantage to warrant switching from a classica Read more…

By John Russell

What’s New in HPC Research: the LHC, Nuclear Reactors, Legion & More

August 1, 2020

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

HPC Career Notes: August 2020 Edition

August 1, 2020

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it’s a promotion, new company hire, or even an accolade, we’ Read more…

By Mariana Iriarte

AWS Solution Channel

AWS announces the release of AWS ParallelCluster 2.8.0

AWS ParallelCluster is a fully supported and maintained open source cluster management tool that makes it easy for scientists, researchers, and IT administrators to deploy and manage High Performance Computing (HPC) clusters in the AWS cloud. Read more…

Intel® HPC + AI Pavilion

Supercomputing the Pandemic: Scientific Community Tackles COVID-19 from Multiple Perspectives

Since their inception, supercomputers have taken on the biggest, most complex, and most data-intensive computing challenges—from confirming Einstein’s theories about gravitational waves to predicting the impacts of climate change. Read more…

Heterogeneous Computing Gets a Code Similarity Tool

July 31, 2020

A machine programming framework for heterogeneous computing championed by Intel Corp. and university partners is built around an automated engine that analyzes code for similarities. The approach could eventually allow n Read more…

By George Leopold

Machines, Connections, Data, and Especially People: OAC Acting Director Amy Friedlander Charts Office’s Blueprint for Innovation

August 3, 2020

The path to innovation in cyberinfrastructure (CI) will require continued focus on building HPC systems and secure connections between them, in addition to the Read more…

By Ken Chiacchia, Pittsburgh Supercomputing Center/XSEDE

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

PEARC20 Plenary Introduces Five Upcoming NSF-Funded HPC Systems

July 30, 2020

Five new HPC systems—three National Science Foundation-funded “Capacity” systems and two “Innovative Prototype/Testbed” systems—will be coming onlin Read more…

By Ken Chiacchia, Pittsburgh Supercomputing Center/XSEDE

Nvidia Dominates Latest MLPerf Training Benchmark Results

July 29, 2020

MLPerf.org released its third round of training benchmark (v0.7) results today and Nvidia again dominated, claiming 16 new records. Meanwhile, Google provided e Read more…

By John Russell

$39 Billion Worldwide HPC Market Faces 3.7% COVID-related Drop in 2020

July 29, 2020

Global HPC market revenue reached $39 billion in 2019, growing a healthy 8.2 percent over 2018, according to the latest analysis from Intersect360 Research. A 3 Read more…

By Tiffany Trader

Agenting Change: PEARC20 Keynote Encourages Cultural Change to Make Tech Better, More Diverse

July 29, 2020

The tech world will need to become more diverse if it is to thrive and survive, said Cherri Pancake, director of the Northwest Alliance for Computational Resear Read more…

By Ken Chiacchia, Pittsburgh Supercomputing Center/XSEDE

In Big Win for COVID-19 Research, Neocortix Brings Arm Support to [email protected], [email protected]

July 28, 2020

Normally, Neocortix offers distributed cloud computing for its clients by way of PhonePaycheck, an app that pays users in exchange for the idle processing time Read more…

By Oliver Peckham

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

Leading Solution Providers

Contributors

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Joliot-Curie Supercomputer Used to Build First Full, High-Fidelity Aircraft Engine Simulation

July 14, 2020

When industrial designers plan the design of a new element of a vehicle’s propulsion or exterior, they typically use fluid dynamics to optimize airflow and in Read more…

By Oliver Peckham

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

John Martinis Reportedly Leaves Google Quantum Effort

April 21, 2020

John Martinis, who led Google’s quantum computing effort since establishing its quantum hardware group in 2014, has left Google after being moved into an advi Read more…

By John Russell

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This