Extreme Computational Biology at SC13: An Interview with Dr. Klaus Schulten

By Nicole Hemsoth

November 18, 2013

According to Dr. Klaus Schulten from the University of Illinois, the molecular dynamics and visualization programs NAMD and VMD, which serve over 300,000 registered users in many fields of biology and medicine, are pushing the limits of extreme scale computational biology. Schulten says these programs can operate on a wide variety of hardware and offer new inroads to medical discovery.

Dr. Schulten is among several invited speakers at the SC13 event in Denver and will be offering a deep dive presentation on extreme scale computational biology as powered by NAMD and VAMD tomorrow (Tuesday) at 10:30 a.m.

In addition to outlining NAMD and VMD development over the last several years that led to the programs’ extreme performance on Blue Waters, Titan and Stampede, the talk will also shed light on how these fields and programs are enabled by petascale computing. Further, Schulten will put this in further future hardware context by describing ongoing efforts in power-conscientious NAMD and VMD computing on the ARM and GPU processors needed for utilizing the next generation of computers will be discussed as well.

The following is a brief interview that highlights some key features of his talk.

HPCwire: Can you describe the growth of NAMD and VMD and give us a sense of how these developments have helped computational biology evolve?

Klaus Schulten: NAMD and VMD are programs that permit you to simulate very large biomolecules and effectively taking on the role of a computational microscope—you simulate these molecules and thereby you visualize them. You know their properties from chemistry and biochemistry; you know their structures from biology. Then, just like you simulate a Boeing before you actually build it, you simulate a molecule in the computer to optimize it.

The difference between us and others building similar programs is that we designed the program for parallel computers and for modern software and computer science concepts from the get-go. That meant designing software that went on clusters and then later on parallel computers built around clusters.

That was all until about 2006 when the National Science Foundation decided to invest in a large computer that was a hundred times larger than could be foreseen otherwise, called the petascale computer. We wanted to take advantage of this huge power increase—but not just because we wanted to be 100 times more powerful in what we could simulate, but rather we realized all along that all of our simulations were too small, meaning that a living cell is made of millions and millions of molecules that form associations that cooperate, and we needed to understand how these proteins worked together rather than worked by themselves.

With this big computer we wanted to explore how the molecules of life associate into structures and then cooperate, and this is exactly what we achieved. We solved the structure of the HIV virus, which made of way over 1,000 proteins that form a capsid, and we can now describe it atom-by-atom. Without petascale computing that would have been impossible.

Achieving this meant using the computer in two ways. On one side, we made the computer part of the experiment, literally. When you want to see a virus for a traditional experiment, you must have the physical virus on-hand. But just as Boeing can simulate an airplane, and we can simulate many molecules that you find in living cells, bypassing the physical study and making the computer an integral part of the experiment itself.

So we got data from different kinds of experiments via sources such as crystallography and electron microscopy, and then integrated them into one picture of the virus that gave us a view of the virus at the level of the atom. We could then test it in the second step. Finally we could take this model and simulate it in the computer, carrying out the world’s largest simulation ever done I think even to this point.

At this point we have reached our goal—we could show that the structure is stable to simulate in the computer and could look at its physical properties—but now of course comes the question of what we learned from it.

First we resolved structure atom-by-atom because we wanted to make the container of the virus, the so-called “capsid,” a target of drug treatment. That requires that we know the chemistry of that target, because when you deal with drugs that are molecules, you need to know both sides of direct treatment in chemical detail: you need to know the drug, of course, (very small molecules that are pretty straightforward,) and you need to know the target, which in this case is a huge system of over 1,000 proteins, and each protein itself in a big molecule containing itself several tens of thousands of atoms.

Once we applied drugs to our computational virus then we learned that the drugs most likely work very differently than we thought—we found that the HIV virus is in a way more dangerous and intelligent than we thought.

HIV is like a con artist that that smuggles itself into the cell then persuades the cell to help the virus infect it. Otherwise it’s not at all easy to infect a cell: the virus has to put its own genetic material into the nucleus of the cell, where the living cell has its genetic material, which is so difficult because the nucleus is very protected and very well organized against this kind of intrusion. But the virus talks a cell into helping it to get its genes into the nucleus.

And it is this cooperation that is acted upon by antiviral drugs.

And so now we have the stage of this drama: on the enormous surface of the virus, which is made up of over a thousand proteins, the virus recruits proteins from the infected cell to help it in its vicious strategy to get the virus’ genes inside. That is where antiviral drugs apparently interfere with this coordination with the cell.

HPCwire: I know at the end of your talk you plan on closing with the direction for using ARM and GPU cores to further this. Can you speak to that angle?

Klaus Schulten: We are one of the technology centers funded by the National Institutes of Health. We’re called the Center for Macromolecular Modeling and Bioinformatics and we’ve received funding for 23 years now and we will receive funding for five more years. The task of the center is to make the absolute best computing technology available to biomedical researchers in the United States.

And our task, since we have shown that we through our research that we can use the modern computing technology (particularly parallel computing) extremely well, is that we not only use it for our own research but that we also make it available for others. Our goal is to be as good or better that the physicists in using computing technology for the benefit of our particular scientific community, which in our case is biomedical research.

I think we are doing very, very well because our software runs extremely effectively on the biggest computers in the world. But it was the same software from the laptop to these big computers, so the individual researcher can learn it on his or her laptop and use it all the way to the big machine. In the same way, if we develop for the big machine it trickles down quickly back to the small machine.

Our task is now to utilize this technology constantly. So from 2006 to 2012 we have been working on making petascale computing possible. We focused on making these programs capable of simulating very, very large systems, hundreds of times larger than before, and also on analyzing and visualizing the results. This meant working on two fronts: on the front of the actual simulation that’s done by the program NAMD, and on the front of the visualization.

Now this is old. Of the new technologies going on, we think that the upcoming technology for the next generations of computers will be ARM chips, which we’ve been very successful in integrating.

But one factor that has never before been so important is the use of power. Now we not only adopt the new generation of chips for our software perhaps two, three years before the first time any scientists outside of our own group will use it, but we have to power profile all of our algorithms and all of our computational strategies.

Before the only thing that counted was how fast we compute. Now the talk is of scalability and making bigger models that effectively make use of bigger machines, and the talk in the lab is constantly about power profiling. Where can we cut corners in power consumption? What new computational strategies should we adopt? So the issue of power consumption is coming into our development work.

HPCwire: So there really aren’t a lot of on-base supercomputers at all, so where and how are you testing these ideas?

Klaus Schulten: First, are the smartphones and tablets. Our priority is to support the software that puts demands on machine so that through a smartphone or tablet you have another input device, an extra monitor or extra output device. But we’re already now well on our way to have the entire programs run on tablets and smartphones.

That went through pretty well, but the main problem is that you have a very, very small monitor, so you must develop a new user interface and that takes time and created a bottleneck for when we can release our software on these devices.

The main point, however, is that computers will be built from these kinds of chips that people expect, and then these kinds of chips will be made available in a form that you can put them in for other interactions and use them for computing. For that moment we will also be ready.

We’ve learned that these are very intelligent chips that can handle power issues in a much more flexible way, which enabled us to add dimension to our computational strategy that we never had before: a totally new culture to prepare us for the next generation of computing.

HPCwire: Let’s talk briefly about what GPUs have lended to computational biology in general.

Klaus Schulten: They were a tremendous benefit because they go two directions. The first is they make very powerful computing possible in the lab for a much less money. It’s very cost-effective computing, and very powerful computing. So the kind of calculations that until just about two, three years ago required a $50,000 computer can be done now with a few-thousand-dollar GPU cluster or even a single GPU board.

In the other direction, many smaller calculations are being made possible through GPUs. We were very early in demonstrating this with our first GPU extended paper, but today many labs work on it very well.

So that is the poor man’s powerful computer, which has been essential in proliferating the methodology and the culture of computing within the biomedical community.

Finally we come to accelerators, which is where Cray has played such a large role, particularly in boosting the speed of Titan and Blue Waters by above a factor of two. So too we can often be better—we are still battling to get more power out of the GPUs. But the effect is that what we expected at first to gain from these computers is doubled or now tripled.

And that of course is when the power of the computer is delineating the scientific frontier. When all of the sudden you can go twice as far, reaching twice as fast into new territory, that’s a huge scientific advancement. That’s what GPUs made possible.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Talk to Me: Nvidia Claims NLP Inference, Training Records

August 15, 2019

Nvidia says it’s achieved significant advances in conversation natural language processing (NLP) training and inference, enabling more complex, immediate-response interchanges between customers and chatbots. And the co Read more…

By Doug Black

Trump Administration and NIST Issue AI Standards Development Plan

August 14, 2019

Efforts to develop AI are gathering steam fast. On Monday, the White House issued a federal plan to help develop technical standards for AI following up on a mandate contained in the Administration’s AI Executive Order Read more…

By John Russell

Scientists to Tap Exascale Computing to Unlock the Mystery of our Accelerating Universe

August 14, 2019

The universe and everything in it roared to life with the Big Bang approximately 13.8 billion years ago. It has continued expanding ever since. While we have a good understanding of the early universe, its fate billions Read more…

By Rob Johnson

AWS Solution Channel

Efficiency and Cost-Optimization for HPC Workloads – AWS Batch and Amazon EC2 Spot Instances

High Performance Computing on AWS leverages the power of cloud computing and the extreme scale it offers to achieve optimal HPC price/performance. With AWS you can right size your services to meet exactly the capacity requirements you need without having to overprovision or compromise capacity. Read more…

HPE Extreme Performance Solutions

Bring the combined power of HPC and AI to your business transformation

FPGA (Field Programmable Gate Array) acceleration cards are not new, as they’ve been commercially available since 1984. Typically, the emphasis around FPGAs has centered on the fact that they’re programmable accelerators, and that they can truly offer workload specific hardware acceleration solutions without requiring custom silicon. Read more…

IBM Accelerated Insights

Cloudy with a Chance of Mainframes

[Connect with HPC users and learn new skills in the IBM Spectrum LSF User Community.]

Rapid rates of change sometimes result in unexpected bedfellows. Read more…

Argonne Supercomputer Accelerates Cancer Prediction Research

August 13, 2019

In the fight against cancer, early prediction, which drastically improves prognoses, is critical. Now, new research by a team from Northwestern University – and accelerated by supercomputing resources at Argonne Nation Read more…

By Oliver Peckham

Scientists to Tap Exascale Computing to Unlock the Mystery of our Accelerating Universe

August 14, 2019

The universe and everything in it roared to life with the Big Bang approximately 13.8 billion years ago. It has continued expanding ever since. While we have a Read more…

By Rob Johnson

AI is the Next Exascale – Rick Stevens on What that Means and Why It’s Important

August 13, 2019

Twelve years ago the Department of Energy (DOE) was just beginning to explore what an exascale computing program might look like and what it might accomplish. Today, DOE is repeating that process for AI, once again starting with science community town halls to gather input and stimulate conversation. The town hall program... Read more…

By Tiffany Trader and John Russell

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Lenovo Drives Single-Socket Servers with AMD Epyc Rome CPUs

August 7, 2019

No summer doldrums here. As part of the AMD Epyc Rome launch event in San Francisco today, Lenovo announced two new single-socket servers, the ThinkSystem SR635 Read more…

By Doug Black

Building Diversity and Broader Engagement in the HPC Community

August 7, 2019

Increasing diversity and inclusion in HPC is a community-building effort. Representation of both issues and individuals matters - the more people see HPC in a w Read more…

By AJ Lauer

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

Upcoming NSF Cyberinfrastructure Projects to Support ‘Long-Tail’ Users, AI and Big Data

August 5, 2019

The National Science Foundation is well positioned to support national priorities, as new NSF-funded HPC systems to come online in the upcoming year promise to Read more…

By Ken Chiacchia, Pittsburgh Supercomputing Center/XSEDE

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Qualcomm Invests in RISC-V Startup SiFive

June 7, 2019

Investors are zeroing in on the open standard RISC-V instruction set architecture and the processor intellectual property being developed by a batch of high-flying chip startups. Last fall, Esperanto Technologies announced a $58 million funding round. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This