LINPACK Creator Sheds Light on Emerging HPC Benchmark

By Nicole Hemsoth

November 18, 2013

Back in June during the International Supercomputing Conference (ISC), we discussed the need for a potential alternative to the current LINPACK benchmark, which is the sturdy yardstick by which supercomputing might is measured, with its creator, Dr. Jack Dongarra.

At that time, he described a new benchmarking effort that is taking shape with the input of several collaborators, called the high performance conjugate gradient (HPCG) benchmark. The news about this effort drew a great deal of positive reaction from the scientific computing community in particular as it is more in tune with the types of modern and future simulations that are actually running on LINPACK top-ranked systems on the Top500. This new benchmark will be announced in further detail tomorrow (Tuesday) during the Top500 announcement and will be made available to be tested across a wider array of systems.

Dongarra says that while there are a few systems that have reported early numbers using the “alpha” version of this benchmark, it’s not time to think about replacing LINPACK just yet. He says that HPCG will undergo many tweaks over the next couple of years before it’s ready for primetime. It has already been distributed in its early form to the vendor community to test and comment upon, leading to a number of valuable insights about more alterations and again, will be put to the test of a wider set of systems once the code is opened to more users beginning after SC13.

But the community needs to start somewhere, especially when it comes to kickstarting the process of moving from a benchmark that emphasizes the floating point capabilities that were a key factor in systems from 20 years ago. LINPACK, which began its evolution in the late 1970s, does measure how well the CPU is able to do floating point arithmetic, but it doesn’t really capture what’s happening with the rest of the machine—especially in those more pressured parts involved with data movement, most notably the interconnect network.

Interestingly though, what happens with such a benchmark is that the performance that is being reported differs quite dramatically from LINPACK performance results. Dongarra said they’re seeing around a factor of 40 or 50 between the performance on the LINPACK benchmark and the performance along the HPCG benchmark—and that performance isn’t quite the same sexy result we see with the Top500 and its flops-centric approach.

As Dongarra told us, when it comes to benchmarking according to real application needs, “It’s not only about the CPU, but it’s also very much about the interconnect; you might be able to do floating point rapidly but if you don’t have the ability to move data quickly that’s going to show up in terms of the performance that we see. “You have to remember that LINPACK came about in the late 1970s and then floating point performance was a critical thing on those CPUs and was one of the more expensive elements. But today our machines are overprovisioned for doing floating point arithmetic; it’s a fast operation and represents a relatively smaller amount of the overall time to do some of these simulations—it’s the data and communication so hence the focus.”

Dongarra explains that it’s less, but that’s because HPCG is more reflective of the kind of operations we see in typical problems used in simulation today. For instance, think of a simulation that’s being modeled through a partial differential equation where the solution requires a sparse matrix problem to be solved. With the new benchmark, it’s the sparse matrix problem that’s the focus. This is quite different than the problem that was used in the original LINPACK as that dealt with dense matrix problems.

Right now Dongarra, his colleague Dr. Michael Heroux and others are working to hash out major kinks with the benchmark based on early results of tests. These include some critical components that are most often pointed out, including the pre-conditioner. But all of this is par for the course, says Dongarra.

“For what it’s worth LINPACK evolved over many years so there were adjustments over many years to today where we have something that has a historical basis we can point to and feel good about. We even still adjust things in LINPACK. For instance, one of the criteria that’s used in the original LINPACK benchmark to see if the correct answer is achieved, we’re noticing that number isn’t as good as it should be when we have very large matrices so we’re making an adjustment there to get it right.”

He concluded, noting “I would say it more accurately reflects the applications we do today and tomorrow, whereas LINPACK represents the applications of the 1980s,” said the LINPACK pioneer. “One of the concerns here is that manufacturers want to get a good Top500 rating so they look at their architecture and focus architectural features on LINPACK they’re not going to get good performance on today’s large-scale simulation problems. That’s one of the reasons we’re doing this, to refocus or refactor how we design machines to deal with today’s problems.”

For those interested and present in Denver for SC13, you can hear more during Tuesday’s BoF presentation on the LINPACK results and the future of this benchmark.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Glimpses of Today’s Total Solar Eclipse

August 21, 2017

Here are a few arresting images posted by NASA of today’s total solar eclipse. Such astronomical events have always captured our imagination and it’s not hard to understand why such occurrences were often greeted wit Read more…

By John Russell

Tech Giants Outline Battle Plans for Future HPC Market

August 21, 2017

Four companies engaged in a cage fight for leadership in the emerging HPC market of the 2020s are, despite deep differences in some areas, in violent agreement on at least one thing: the power consumption and latency pen Read more…

By Doug Black

Geospatial Data Research Leverages GPUs

August 17, 2017

MapD Technologies, the GPU-accelerated database specialist, said it is working with university researchers on leveraging graphics processors to advance geospatial analytics. The San Francisco-based company is collabor Read more…

By George Leopold

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Centers (IPCCs) has resulted in a new Big Data Center (BDC) that Read more…

By Linda Barney

Tech Giants Outline Battle Plans for Future HPC Market

August 21, 2017

Four companies engaged in a cage fight for leadership in the emerging HPC market of the 2020s are, despite deep differences in some areas, in violent agreement Read more…

By Doug Black

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Leading Solution Providers

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This