Tesla GPU Accelerators Hit the Gas with GPU Boost

By Timothy Prickett Morgan

November 18, 2013

Nvidia is rolling out a new top-end GPU accelerator, called the Tesla K40, that has both more processing capacity and more memory than the current K20X accelerator that is popular in high-end clusters – particularly those that need double precision floating point math.

The upgrade is offering significant performance improvements through the activation of more cores on the GPU and also through a new GPU Boost mode that lets the CUDA cores overclock.

It has been common practice to have a mid-life upgrade in the Tesla line as yields improve in the processes that Nvidia’s chip fabrication partner, Taiwan Semiconductor Manufacturing Corp, uses to etch the GPU chips. At some point, the yields are high enough that more of the CUDA cores on the chip can be turned on, which is usually not possible at the beginning of the product cycle. For instance, the original “Fermi” Tesla M2070 coprocessors, which debuted at SC09 in November 2009, had a GPU that had 512 CUDA, but only 448 of them were activated. They ran at 1.15 GHz. In May 2011, when the yields were better and the chip making processes at TSMC were refined, all of the 512 cores were fired up in the Tesla M2090 GPU coprocessor and clock speeds were edged up to 1.3 GHz.

nvidia-tesla-k40The Tesla K40 is a similar kind of mid-life upgrade for the “Kepler” family of GPUs that are focused at the high end where both single-precision and double-precision floating point performance matter. With the Kepler design, Nvidia added a lot more CUDA cores to the GPU chip and cut the clock speeds in half compared to the Fermi chips, and this allowed for the GPU to do a lot more work and still stay within the 225 watt to 235 watt thermal envelope that a discrete GPU coprocessor card has to live within.

As you can see from the table below, the top-end Tesla K20X GPU accelerator that debuted in November 2012 at SC12 had 2,688 cores running at 732 MHz; it also had 6 GB of GDDR5 graphics memory for the GPU to use as it does its data crunching. It plugged into a PCI-Express 2.0 slot and delivered performance of 3.93 teraflops at single precision and 1.31 teraflops at double precision.

nvidia-tesla-k20x-versus-k40

With the K40 GPU accelerator, the number of CUDA cores is increased to 2,880 (up 7.1 percent), the clock speed is nudged up to 745 MHz (up 1.8 percent), and the GDDR5 memory is 12 GB (double of the K20X card). The memory bandwidth is the K40 is, at 288 GB/sec, is 15.2 percent higher than in the K20X. The end result is that the base Tesla K40 can hit 4.29 teraflops at single precision and 1.43 teraflops at double precision, which is a 9.2 percent performance bump for both.

The K40 card plugs into a PCI-Express 3.0 x16 slot, which can handle roughly twice the I/O bandwidth as the prior PCI-Express 2.0 x16 slot used with the K20X. PCI-Express 3.0 slots are supported on the past “Sandy Bridge” and current “Ivy Bridge” Xeon E5 processors from Intel; AMD has not yet delivered an Opteron processor that supports PCI-Express 3.0, and this is one reason why its prospects in high performance computing have dimmed in recent years.

But that is not all you get. With the new GPU Boost mode, all of the cores can ratchet up their speed to either 810 MHz or 875 MHz to push the floating point performance higher at those times that the server enclosure in which the Tesla cards are slotted has the thermal headroom to let them run a little hotter.

Sumit Gupta, general manager of the Tesla Accelerated Computing business unit at Nvidia, tells HPCwire that the Tesla GPUs have very sophisticated mechanisms to keep the GPU from overheating, but the algorithms behind these throttles assume a worst-case scenario, even when the GPU is not actually burning that much electricity and generating that much heat. Unlike Turbo Boost on X86 server processors, which only lets one core accelerate to a much higher speed when other cores are relatively idle, the GPU boost feature ramps up the clocks on all of the CUDA cores to speed up their work. While Turbo Boost is automatic, GPU Boost has to be invoked, and this is done on purpose. “In a cluster, you need uniform performance across the nodes, and doing it this way is better than having each GPU invoke boosting itself.”

It is not clear how much of the performance boost with the Tesla K40 card is due to the doubling of the GDDR5 memory. But what is clear is that this expanded memory makes the Tesla K40 more applicable to certain workloads than its predecessors. Larger memories are needed for fluid dynamics, seismic analysis, and rendering workloads, just to name three.

“The datasets on some applications are so large that we have actually been limited in many ways in some markets because of the size of the memory,” explains Gupta. “This opens us up to most of the market now.”

So how much extra performance does the K40 provide compared to the K20X? The answer, as usual, is that it depends on the code. But here are some test results that Nvidia ran on some popular applications to give you an idea:

nvidia-tesla-k20x-versus-k40-performance

The incremental gains in moving from the K20X to the K40 are what you would expect from the feeds and speeds above, but what is immediately obvious is that GPU Boost really gooses the performance of applications. Anywhere from 20 to 40 percent, according to that chart, compared to the baseline K20X GPU.

Nvidia is shipping the Tesla K40 GPU coprocessors now, and expects for its server partners to embed them inside of their machines in the coming months. ASUS, Bull, Cray, Dell, Eurotech, Hewlett-Packard, IBM, Inspur, SGI, Sugon, Supermicro, and Tyan are all planning to use the K40 in their systems, and the zippy Tesla cards will also be available through Nvidia resellers. Nvidia does not provide pricing for any of its Tesla coprocessors because it does not sell them directly to consumers.

A number of supercomputer facilities are already getting their hands on the new Tesla K40 cards, including CSC Finland, the Texas Advanced Computing Center, CEA France, and Swinburne University of Technology. Gupta says that TACC will be deploying the K40 coprocessors in its “Maverick” visualization and data analytics system and expects to have it operational by January of next year.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together about 30 participants from industry, government and academia t Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together ab Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Leading Solution Providers

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This