Tesla GPU Accelerators Hit the Gas with GPU Boost

By Timothy Prickett Morgan

November 18, 2013

Nvidia is rolling out a new top-end GPU accelerator, called the Tesla K40, that has both more processing capacity and more memory than the current K20X accelerator that is popular in high-end clusters – particularly those that need double precision floating point math.

The upgrade is offering significant performance improvements through the activation of more cores on the GPU and also through a new GPU Boost mode that lets the CUDA cores overclock.

It has been common practice to have a mid-life upgrade in the Tesla line as yields improve in the processes that Nvidia’s chip fabrication partner, Taiwan Semiconductor Manufacturing Corp, uses to etch the GPU chips. At some point, the yields are high enough that more of the CUDA cores on the chip can be turned on, which is usually not possible at the beginning of the product cycle. For instance, the original “Fermi” Tesla M2070 coprocessors, which debuted at SC09 in November 2009, had a GPU that had 512 CUDA, but only 448 of them were activated. They ran at 1.15 GHz. In May 2011, when the yields were better and the chip making processes at TSMC were refined, all of the 512 cores were fired up in the Tesla M2090 GPU coprocessor and clock speeds were edged up to 1.3 GHz.

nvidia-tesla-k40The Tesla K40 is a similar kind of mid-life upgrade for the “Kepler” family of GPUs that are focused at the high end where both single-precision and double-precision floating point performance matter. With the Kepler design, Nvidia added a lot more CUDA cores to the GPU chip and cut the clock speeds in half compared to the Fermi chips, and this allowed for the GPU to do a lot more work and still stay within the 225 watt to 235 watt thermal envelope that a discrete GPU coprocessor card has to live within.

As you can see from the table below, the top-end Tesla K20X GPU accelerator that debuted in November 2012 at SC12 had 2,688 cores running at 732 MHz; it also had 6 GB of GDDR5 graphics memory for the GPU to use as it does its data crunching. It plugged into a PCI-Express 2.0 slot and delivered performance of 3.93 teraflops at single precision and 1.31 teraflops at double precision.

nvidia-tesla-k20x-versus-k40

With the K40 GPU accelerator, the number of CUDA cores is increased to 2,880 (up 7.1 percent), the clock speed is nudged up to 745 MHz (up 1.8 percent), and the GDDR5 memory is 12 GB (double of the K20X card). The memory bandwidth is the K40 is, at 288 GB/sec, is 15.2 percent higher than in the K20X. The end result is that the base Tesla K40 can hit 4.29 teraflops at single precision and 1.43 teraflops at double precision, which is a 9.2 percent performance bump for both.

The K40 card plugs into a PCI-Express 3.0 x16 slot, which can handle roughly twice the I/O bandwidth as the prior PCI-Express 2.0 x16 slot used with the K20X. PCI-Express 3.0 slots are supported on the past “Sandy Bridge” and current “Ivy Bridge” Xeon E5 processors from Intel; AMD has not yet delivered an Opteron processor that supports PCI-Express 3.0, and this is one reason why its prospects in high performance computing have dimmed in recent years.

But that is not all you get. With the new GPU Boost mode, all of the cores can ratchet up their speed to either 810 MHz or 875 MHz to push the floating point performance higher at those times that the server enclosure in which the Tesla cards are slotted has the thermal headroom to let them run a little hotter.

Sumit Gupta, general manager of the Tesla Accelerated Computing business unit at Nvidia, tells HPCwire that the Tesla GPUs have very sophisticated mechanisms to keep the GPU from overheating, but the algorithms behind these throttles assume a worst-case scenario, even when the GPU is not actually burning that much electricity and generating that much heat. Unlike Turbo Boost on X86 server processors, which only lets one core accelerate to a much higher speed when other cores are relatively idle, the GPU boost feature ramps up the clocks on all of the CUDA cores to speed up their work. While Turbo Boost is automatic, GPU Boost has to be invoked, and this is done on purpose. “In a cluster, you need uniform performance across the nodes, and doing it this way is better than having each GPU invoke boosting itself.”

It is not clear how much of the performance boost with the Tesla K40 card is due to the doubling of the GDDR5 memory. But what is clear is that this expanded memory makes the Tesla K40 more applicable to certain workloads than its predecessors. Larger memories are needed for fluid dynamics, seismic analysis, and rendering workloads, just to name three.

“The datasets on some applications are so large that we have actually been limited in many ways in some markets because of the size of the memory,” explains Gupta. “This opens us up to most of the market now.”

So how much extra performance does the K40 provide compared to the K20X? The answer, as usual, is that it depends on the code. But here are some test results that Nvidia ran on some popular applications to give you an idea:

nvidia-tesla-k20x-versus-k40-performance

The incremental gains in moving from the K20X to the K40 are what you would expect from the feeds and speeds above, but what is immediately obvious is that GPU Boost really gooses the performance of applications. Anywhere from 20 to 40 percent, according to that chart, compared to the baseline K20X GPU.

Nvidia is shipping the Tesla K40 GPU coprocessors now, and expects for its server partners to embed them inside of their machines in the coming months. ASUS, Bull, Cray, Dell, Eurotech, Hewlett-Packard, IBM, Inspur, SGI, Sugon, Supermicro, and Tyan are all planning to use the K40 in their systems, and the zippy Tesla cards will also be available through Nvidia resellers. Nvidia does not provide pricing for any of its Tesla coprocessors because it does not sell them directly to consumers.

A number of supercomputer facilities are already getting their hands on the new Tesla K40 cards, including CSC Finland, the Texas Advanced Computing Center, CEA France, and Swinburne University of Technology. Gupta says that TACC will be deploying the K40 coprocessors in its “Maverick” visualization and data analytics system and expects to have it operational by January of next year.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AWS Embraces FPGAs, ‘Elastic’ GPUs

December 2, 2016

A new instance type rolled out this week by Amazon Web Services is based on customizable field programmable gate arrays that promise to strike a balance between performance and cost as emerging workloads create requirements often unmet by general-purpose processors. Read more…

By George Leopold

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 1, 2016)

December 1, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPC Career Notes (Dec. 2016)

December 1, 2016

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high performance computing community. Read more…

By Thomas Ayres

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

IBM and NSF Computing Pioneer Erich Bloch Dies at 91

November 30, 2016

Erich Bloch, a computational pioneer whose competitive zeal and commercial bent helped transform the National Science Foundation while he was its director, died last Friday at age 91. Bloch was a productive force to be reckoned. During his long stint at IBM prior to joining NSF Bloch spearheaded development of the “Stretch” supercomputer and IBM’s phenomenally successful System/360. Read more…

By John Russell

Pioneering Programmers Awarded Presidential Medal of Freedom

November 30, 2016

In an awards ceremony on November 22, President Barack Obama recognized 21 recipients with the Presidential Medal of Freedom, the Nation’s highest civilian honor. Read more…

By Tiffany Trader

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Intel Details AI Hardware Strategy for Post-GPU Age

November 21, 2016

Last week at SC16, Intel revealed its product roadmap for embedding its processors with key capabilities and attributes needed to take artificial intelligence (AI) to the next level. Read more…

By Alex Woodie

SC Says Farewell to Salt Lake City, See You in Denver

November 18, 2016

After an intense four-day flurry of activity (and a cold snap that brought some actual snow flurries), the SC16 show floor closed yesterday (Thursday) and the always-extensive technical program wound down today. Read more…

By Tiffany Trader

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Leading Solution Providers

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This