Tesla GPU Accelerators Hit the Gas with GPU Boost

By Timothy Prickett Morgan

November 18, 2013

Nvidia is rolling out a new top-end GPU accelerator, called the Tesla K40, that has both more processing capacity and more memory than the current K20X accelerator that is popular in high-end clusters – particularly those that need double precision floating point math.

The upgrade is offering significant performance improvements through the activation of more cores on the GPU and also through a new GPU Boost mode that lets the CUDA cores overclock.

It has been common practice to have a mid-life upgrade in the Tesla line as yields improve in the processes that Nvidia’s chip fabrication partner, Taiwan Semiconductor Manufacturing Corp, uses to etch the GPU chips. At some point, the yields are high enough that more of the CUDA cores on the chip can be turned on, which is usually not possible at the beginning of the product cycle. For instance, the original “Fermi” Tesla M2070 coprocessors, which debuted at SC09 in November 2009, had a GPU that had 512 CUDA, but only 448 of them were activated. They ran at 1.15 GHz. In May 2011, when the yields were better and the chip making processes at TSMC were refined, all of the 512 cores were fired up in the Tesla M2090 GPU coprocessor and clock speeds were edged up to 1.3 GHz.

nvidia-tesla-k40The Tesla K40 is a similar kind of mid-life upgrade for the “Kepler” family of GPUs that are focused at the high end where both single-precision and double-precision floating point performance matter. With the Kepler design, Nvidia added a lot more CUDA cores to the GPU chip and cut the clock speeds in half compared to the Fermi chips, and this allowed for the GPU to do a lot more work and still stay within the 225 watt to 235 watt thermal envelope that a discrete GPU coprocessor card has to live within.

As you can see from the table below, the top-end Tesla K20X GPU accelerator that debuted in November 2012 at SC12 had 2,688 cores running at 732 MHz; it also had 6 GB of GDDR5 graphics memory for the GPU to use as it does its data crunching. It plugged into a PCI-Express 2.0 slot and delivered performance of 3.93 teraflops at single precision and 1.31 teraflops at double precision.

nvidia-tesla-k20x-versus-k40

With the K40 GPU accelerator, the number of CUDA cores is increased to 2,880 (up 7.1 percent), the clock speed is nudged up to 745 MHz (up 1.8 percent), and the GDDR5 memory is 12 GB (double of the K20X card). The memory bandwidth is the K40 is, at 288 GB/sec, is 15.2 percent higher than in the K20X. The end result is that the base Tesla K40 can hit 4.29 teraflops at single precision and 1.43 teraflops at double precision, which is a 9.2 percent performance bump for both.

The K40 card plugs into a PCI-Express 3.0 x16 slot, which can handle roughly twice the I/O bandwidth as the prior PCI-Express 2.0 x16 slot used with the K20X. PCI-Express 3.0 slots are supported on the past “Sandy Bridge” and current “Ivy Bridge” Xeon E5 processors from Intel; AMD has not yet delivered an Opteron processor that supports PCI-Express 3.0, and this is one reason why its prospects in high performance computing have dimmed in recent years.

But that is not all you get. With the new GPU Boost mode, all of the cores can ratchet up their speed to either 810 MHz or 875 MHz to push the floating point performance higher at those times that the server enclosure in which the Tesla cards are slotted has the thermal headroom to let them run a little hotter.

Sumit Gupta, general manager of the Tesla Accelerated Computing business unit at Nvidia, tells HPCwire that the Tesla GPUs have very sophisticated mechanisms to keep the GPU from overheating, but the algorithms behind these throttles assume a worst-case scenario, even when the GPU is not actually burning that much electricity and generating that much heat. Unlike Turbo Boost on X86 server processors, which only lets one core accelerate to a much higher speed when other cores are relatively idle, the GPU boost feature ramps up the clocks on all of the CUDA cores to speed up their work. While Turbo Boost is automatic, GPU Boost has to be invoked, and this is done on purpose. “In a cluster, you need uniform performance across the nodes, and doing it this way is better than having each GPU invoke boosting itself.”

It is not clear how much of the performance boost with the Tesla K40 card is due to the doubling of the GDDR5 memory. But what is clear is that this expanded memory makes the Tesla K40 more applicable to certain workloads than its predecessors. Larger memories are needed for fluid dynamics, seismic analysis, and rendering workloads, just to name three.

“The datasets on some applications are so large that we have actually been limited in many ways in some markets because of the size of the memory,” explains Gupta. “This opens us up to most of the market now.”

So how much extra performance does the K40 provide compared to the K20X? The answer, as usual, is that it depends on the code. But here are some test results that Nvidia ran on some popular applications to give you an idea:

nvidia-tesla-k20x-versus-k40-performance

The incremental gains in moving from the K20X to the K40 are what you would expect from the feeds and speeds above, but what is immediately obvious is that GPU Boost really gooses the performance of applications. Anywhere from 20 to 40 percent, according to that chart, compared to the baseline K20X GPU.

Nvidia is shipping the Tesla K40 GPU coprocessors now, and expects for its server partners to embed them inside of their machines in the coming months. ASUS, Bull, Cray, Dell, Eurotech, Hewlett-Packard, IBM, Inspur, SGI, Sugon, Supermicro, and Tyan are all planning to use the K40 in their systems, and the zippy Tesla cards will also be available through Nvidia resellers. Nvidia does not provide pricing for any of its Tesla coprocessors because it does not sell them directly to consumers.

A number of supercomputer facilities are already getting their hands on the new Tesla K40 cards, including CSC Finland, the Texas Advanced Computing Center, CEA France, and Swinburne University of Technology. Gupta says that TACC will be deploying the K40 coprocessors in its “Maverick” visualization and data analytics system and expects to have it operational by January of next year.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays 2017 Wraps Up in Barcelona

May 18, 2017

Barcelona has been absolutely lovely; the weather, the food, the people. I am, sadly, finishing my last day at PRACEdays 2017 with two sessions: an in-depth loo Read more…

By Kim McMahon

US, Europe, Japan Deepen Research Computing Partnership

May 18, 2017

On May 17, 2017, a ceremony was held during the PRACEdays 2017 conference in Barcelona to announce the memorandum of understanding (MOU) between PRACE in Europe Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

NSF, IARPA, and SRC Push into “Semiconductor Synthetic Biology” Computing

May 18, 2017

Research into how biological systems might be fashioned into computational technology has a long history with various DNA-based computing approaches explored. N Read more…

By John Russell

DOE’s HPC4Mfg Leads to Paper Manufacturing Improvement

May 17, 2017

Papermaking ranks third behind only petroleum refining and chemical production in terms of energy consumption. Recently, simulations made possible by the U.S. D Read more…

By John Russell

PRACEdays 2017: The start of a beautiful week in Barcelona

May 17, 2017

Touching down in Barcelona on Saturday afternoon, it was warm, sunny, and oh so Spanish. I was greeted at my hotel with a glass of Cava to sip and treated to a Read more…

By Kim McMahon

NSF Issues $60M RFP for “Towards a Leadership-Class” System

May 16, 2017

In case you missed it, the National Science Foundation issued the request for proposals (RFP) for the next ‘Towards a Leadership-Class Computing Facility – Read more…

By John Russell

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

IBM PowerAI Tools Aim to Ease Deep Learning Data Prep, Shorten Training 

May 10, 2017

A new set of GPU-powered AI software announced by IBM today brings automation to many of the tedious, time consuming and complex aspects of AI project on-rampin Read more…

By Doug Black

Bright Computing 8.0 Adds Azure, Expands Machine Learning Support

May 9, 2017

Bright Computing, long a prominent provider of cluster management tools for HPC, today released version 8.0 of Bright Cluster Manager and Bright OpenStack. The Read more…

By John Russell

Microsoft Azure Will Debut Pascal GPU Instances This Year

May 8, 2017

As Nvidia's GPU Technology Conference gets underway in San Jose, Calif., Microsoft today revealed plans to add Pascal-generation GPU horsepower to its Azure clo Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular Read more…

By John Russell

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This