Tesla GPU Accelerators Hit the Gas with GPU Boost

By Timothy Prickett Morgan

November 18, 2013

Nvidia is rolling out a new top-end GPU accelerator, called the Tesla K40, that has both more processing capacity and more memory than the current K20X accelerator that is popular in high-end clusters – particularly those that need double precision floating point math.

The upgrade is offering significant performance improvements through the activation of more cores on the GPU and also through a new GPU Boost mode that lets the CUDA cores overclock.

It has been common practice to have a mid-life upgrade in the Tesla line as yields improve in the processes that Nvidia’s chip fabrication partner, Taiwan Semiconductor Manufacturing Corp, uses to etch the GPU chips. At some point, the yields are high enough that more of the CUDA cores on the chip can be turned on, which is usually not possible at the beginning of the product cycle. For instance, the original “Fermi” Tesla M2070 coprocessors, which debuted at SC09 in November 2009, had a GPU that had 512 CUDA, but only 448 of them were activated. They ran at 1.15 GHz. In May 2011, when the yields were better and the chip making processes at TSMC were refined, all of the 512 cores were fired up in the Tesla M2090 GPU coprocessor and clock speeds were edged up to 1.3 GHz.

nvidia-tesla-k40The Tesla K40 is a similar kind of mid-life upgrade for the “Kepler” family of GPUs that are focused at the high end where both single-precision and double-precision floating point performance matter. With the Kepler design, Nvidia added a lot more CUDA cores to the GPU chip and cut the clock speeds in half compared to the Fermi chips, and this allowed for the GPU to do a lot more work and still stay within the 225 watt to 235 watt thermal envelope that a discrete GPU coprocessor card has to live within.

As you can see from the table below, the top-end Tesla K20X GPU accelerator that debuted in November 2012 at SC12 had 2,688 cores running at 732 MHz; it also had 6 GB of GDDR5 graphics memory for the GPU to use as it does its data crunching. It plugged into a PCI-Express 2.0 slot and delivered performance of 3.93 teraflops at single precision and 1.31 teraflops at double precision.

nvidia-tesla-k20x-versus-k40

With the K40 GPU accelerator, the number of CUDA cores is increased to 2,880 (up 7.1 percent), the clock speed is nudged up to 745 MHz (up 1.8 percent), and the GDDR5 memory is 12 GB (double of the K20X card). The memory bandwidth is the K40 is, at 288 GB/sec, is 15.2 percent higher than in the K20X. The end result is that the base Tesla K40 can hit 4.29 teraflops at single precision and 1.43 teraflops at double precision, which is a 9.2 percent performance bump for both.

The K40 card plugs into a PCI-Express 3.0 x16 slot, which can handle roughly twice the I/O bandwidth as the prior PCI-Express 2.0 x16 slot used with the K20X. PCI-Express 3.0 slots are supported on the past “Sandy Bridge” and current “Ivy Bridge” Xeon E5 processors from Intel; AMD has not yet delivered an Opteron processor that supports PCI-Express 3.0, and this is one reason why its prospects in high performance computing have dimmed in recent years.

But that is not all you get. With the new GPU Boost mode, all of the cores can ratchet up their speed to either 810 MHz or 875 MHz to push the floating point performance higher at those times that the server enclosure in which the Tesla cards are slotted has the thermal headroom to let them run a little hotter.

Sumit Gupta, general manager of the Tesla Accelerated Computing business unit at Nvidia, tells HPCwire that the Tesla GPUs have very sophisticated mechanisms to keep the GPU from overheating, but the algorithms behind these throttles assume a worst-case scenario, even when the GPU is not actually burning that much electricity and generating that much heat. Unlike Turbo Boost on X86 server processors, which only lets one core accelerate to a much higher speed when other cores are relatively idle, the GPU boost feature ramps up the clocks on all of the CUDA cores to speed up their work. While Turbo Boost is automatic, GPU Boost has to be invoked, and this is done on purpose. “In a cluster, you need uniform performance across the nodes, and doing it this way is better than having each GPU invoke boosting itself.”

It is not clear how much of the performance boost with the Tesla K40 card is due to the doubling of the GDDR5 memory. But what is clear is that this expanded memory makes the Tesla K40 more applicable to certain workloads than its predecessors. Larger memories are needed for fluid dynamics, seismic analysis, and rendering workloads, just to name three.

“The datasets on some applications are so large that we have actually been limited in many ways in some markets because of the size of the memory,” explains Gupta. “This opens us up to most of the market now.”

So how much extra performance does the K40 provide compared to the K20X? The answer, as usual, is that it depends on the code. But here are some test results that Nvidia ran on some popular applications to give you an idea:

nvidia-tesla-k20x-versus-k40-performance

The incremental gains in moving from the K20X to the K40 are what you would expect from the feeds and speeds above, but what is immediately obvious is that GPU Boost really gooses the performance of applications. Anywhere from 20 to 40 percent, according to that chart, compared to the baseline K20X GPU.

Nvidia is shipping the Tesla K40 GPU coprocessors now, and expects for its server partners to embed them inside of their machines in the coming months. ASUS, Bull, Cray, Dell, Eurotech, Hewlett-Packard, IBM, Inspur, SGI, Sugon, Supermicro, and Tyan are all planning to use the K40 in their systems, and the zippy Tesla cards will also be available through Nvidia resellers. Nvidia does not provide pricing for any of its Tesla coprocessors because it does not sell them directly to consumers.

A number of supercomputer facilities are already getting their hands on the new Tesla K40 cards, including CSC Finland, the Texas Advanced Computing Center, CEA France, and Swinburne University of Technology. Gupta says that TACC will be deploying the K40 coprocessors in its “Maverick” visualization and data analytics system and expects to have it operational by January of next year.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPE to Acquire Cray for $1.3B

May 17, 2019

Venerable supercomputer pioneer Cray Inc. will be acquired by Hewlett Packard Enterprise for $1.3 billion under a definitive agreement announced this morning. The news follows HPE’s acquisition nearly three years ago o Read more…

By Doug Black & Tiffany Trader

China Establishes Seventh National Supercomputing Center

May 16, 2019

Chinese media is reporting that China will construct a new National Supercomputer Center in Zhengzhou, in central China's Henan Province. The new Zhengzhou facility will house a 100-petaflops supercomputer and will be ta Read more…

By Staff report

Interview with 2019 Person to Watch Ken King

May 16, 2019

Today, as the final installment of our HPCwire People to Watch focus series, we present our interview with Ken King, general manager of OpenPOWER for the IBM Systems Group. Ken is responsible for building and managing t Read more…

By HPCwire Editorial Team

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

For decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Autonomous Vehicles: New challenges for the CAE Data Center

Managing infrastructure complexity in the age of AI

When most of us hear the term autonomous vehicles, we conjure up images of driverless Waymos or robotic transport trucks driving long-haul highway routes. Read more…

What’s New in HPC Research: Image Classification, Crowd Computing, Genome Informatics & More

May 15, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

HPE to Acquire Cray for $1.3B

May 17, 2019

Venerable supercomputer pioneer Cray Inc. will be acquired by Hewlett Packard Enterprise for $1.3 billion under a definitive agreement announced this morning. T Read more…

By Doug Black & Tiffany Trader

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

CCC Offers Draft 20-Year AI Roadmap; Seeks Comments

May 14, 2019

Artificial Intelligence in all its guises has captured much of the conversation in HPC and general computing today. The White House, DARPA, IARPA, and Departmen Read more…

By John Russell

Cascade Lake Shows Up to 84 Percent Gen-on-Gen Advantage on STAC Benchmarking

May 13, 2019

The Securities Technology Analysis Center (STAC) issued a report Friday comparing the performance of Intel's Cascade Lake processors with previous-gen Skylake u Read more…

By Tiffany Trader

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

ASC19: NTHU Returns to Glory

May 11, 2019

As many of you Student Cluster Competition fanatics know by now, Taiwan’s National Tsing Hua University (NTHU) won the gold medal at the recently concluded AS Read more…

By Dan Olds

Intel 7nm GPU on Roadmap for 2021, OneAPI Coming This Year

May 8, 2019

At Intel's investor meeting today in Santa Clara, Calif., the company filled in details of its roadmap and product launch plans and sought to allay concerns about delays of its 10nm chips. In laying out its 10nm and 7nm timelines, Intel revealed that its first 7nm product would be... Read more…

By Tiffany Trader

Ten Great Reasons to Build the 1.5 Exaflops Frontier

May 7, 2019

It’s perhaps obvious that the fundamental reason for building expensive exascale computers is to drive science and industry forward, realizing the resulting b Read more…

By John Russell

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This