HPC Power Efficiency and the Green500

By Kirk W. Cameron

November 20, 2013

The first Green500 List was launched in November 2007 ranking the energy efficiency of supercomputers. Co-founder Kirk W. Cameron discusses the events that led to creation of the Green500 List, its maturation, and future directions.

An Early Supercomputer Efficiency “List”

In 2001 the notions of Green HPC and energy proportional computing were unknown. There was no tangible evidence that power was an issue in supercomputers. Vendors simply built large systems to customer specifications. Performance kept increasing exponentially and while performance efficiency was of interest, power efficiency was not.

My early work in Green HPC was inspired by the tradeoffs inherent to power and performance. I imagined how varying power modes might make supercomputers more efficient. I speculated as to how such technologies would change the way we compute in HPC. But, in the beginning this seemed like a solution looking for a problem. No one at the time believed power was or ever would be an issue in HPC.

I needed data. And lots of it if I was to convince a community power was important. The Top500 List provided a plethora of performance data, but nothing related to power. Many of the larger supercomputer systems posted their specifications online, but the information was spotty at best and it became obvious quickly that no one was measuring power. If I wanted to improve power efficiency in supercomputers, not only would I have to prove conclusively that a power problem existed, I would have to start measuring systems myself! As a software guy, this was daunting.

cameron_fig

Figure 1. Source: NSF Career Proposal Submission, K.W. Cameron, July 2003.

It seems almost comical now, but I spent 4 months obtaining the data for Figure 1. This “list” of power consumption for the top supercomputers from 6 different Top500 lists over ten years was the first of its kind. Perhaps the most striking feature is the exponential increase in raw power consumption of the top systems from 1993 to 2003. Moreover, despite separation by a decade of technological advances, the efficiency of the TMC CM-5 (~12 MFLOPS/watt) was more than double that of the Japanese Earth simulator (5.6 MFLOPS/watt).

The trends are clear and irrefutable. Supercomputer power was a liability and would soon limit scalability. Of course, it would be almost 4 years before the community at-large began to acknowledge supercomputer power was a fundamental constraint. Let’s just say I’ve learned to be patient.

Origins of the Green500 List

Particularly in those early years, I spent a lot of time considering data collection and power measurement. My team built infrastructures and designed tools and methodologies to accurately track power usage in HPC systems. We ported our framework again and again to learn as much as we could about the tradeoffs between power and performance on emergent systems. We also built the first power-scalable HPC system prototype.

Wu Feng approached me in 2006 with the notion of creating a list of power efficient supercomputers akin to the Top500. I was already a firm believer in the need for such data having spent 4 months creating a small list of power consumption for 6 supercomputers. Furthermore, I had spent the last three years designing several generations of power measurement toolkits. My group arguably had compiled the largest, most detailed repository of HPC power data and we had a vast amount of experience measuring HPC system power.

My primary role was to design the power measurement run rules for the first list. We knew that other benchmarking methodologies had suffered when the system could be gamed easily. Based on my experience measuring power, we wrote a set of run rules describing how to easily measure a single node and extrapolate the power for a supercomputer running Linpack. The rules were designed to encourage participation by enabling non-experts to report their own power data with minimal investment in time and money. For those not reporting, we would use the UL ratings (see Figure 1) to fully populate the list.

Ease of participation was paramount. The Linpack benchmark was not ideal, but the only benchmark most supercomputer users reported regularly. MFLOPS per Watt was not an ideal metric, but it was easy to report and would encourage energy efficient, high-performance solutions.

After 6 months of discussion we solicited participation from the broader community. About a year later, in November 2007, we released the first list. The launch of the first Green500 List was an event. As if scripted, just prior to launch, the power problem in data centers had become front-page news and rather suddenly many agreed that supercomputers needed to become more energy efficient.

Some embraced the list and touted high-ranked systems while deriding low-ranked systems. Some complained of being disenfranchised. Some ridiculed our methodology and metrics. Some took issue with the lack of community involvement or coordination with other lists, benchmarks, and government agencies.

The Green500 List Matures

While most of the early dialogue and press affirmed the need for the Green500 List, some valid criticisms led to significant improvements. For example, we released an updated list in early 2008 to include measured numbers from those that did not report to the first list. In succeeding lists, we limited the amount of information we track to focus exclusively on energy efficiency. Later, we obtained research funding to explore the potential use of other benchmarks and metrics.

We’ve actively sought feedback from users as the list has matured. This has resulted in additional lists such as the Little Green500. While entry to the Green500 requires placing among the 500 fastest systems in the world, the Little Green500 broadens this definition to include systems as fast as the slowest supercomputer from the three previous Top500 lists. The goal of this list is to provide efficiency information to those that would deploy smaller systems.

While the Green500 was a bit isolated initially, it is now part of a thriving community of activists promoting energy efficiency. The Climate Savers Computing Initiative, The Green Grid, and the Energy Efficiency HPC Working Group are just a few of the proactive groups that ensure energy efficiency is now a first-class constraint in HPC design, procurement and management. For example, the Energy Efficiency HPC Working Group has been instrumental in identifying limitations in the Green500 measurement methodology. They have invested significant time and effort to isolate these limitations and suggest improvements to our methodologies that will likely be adopted in the future. They have also provided a conduit for opening discussions between the Department of Energy and vendors to establish standard practices for evaluating energy efficiency during the procurement process.

Legacy and Future of the Green500

The legacy of the Green500 is the establishment of a consistent, easy-to-follow set of power measurement run rules and the resulting data. Before the Green500 there was no widely accepted methodology for measuring supercomputer power, no way to track energy efficiency from year to year, and thus no way to encourage efficient design. The Green500 power measurement methodology has persisted nearly unchanged for almost 7 years laying the foundation for a standardized methodology for collecting supercomputer power data. The methodology can always be improved. For example, the Top500 has tweaked its run rules over the years to prevent gaming. However, the early establishment of a set of consistent, easy to follow run rules provided fairness and stability in the Green500 List’s critical infancy.

The stability of the run rules enables us to consistently analyze trends in efficiency data from year to year. These trends lead to a number of interesting observations.

I agree with Horst. Assuming its efficiency could be maintained, the TMC CM-5 system from 1993 would have landed in position #493 on the inaugural November 2007 Green500 List. This position is ahead of both the Earth Simulator (#497) and ASCI Q (#500). From 1993 to 2007 the MFLOPS/watt of the fastest systems went from 12 to 357. From 2007 to 2013 the MFLOPS/watt of the fastest systems went from 357 to 3208.

An exascale system in 20 MW will require 50,000 MFLOPS/watt. If efficiency trends continue as they did from 1993 to 2007, a 20MW exascale system is achievable in about 22 years (2035). The last 6 years saw tremendous efficiency improvements using accelerators. Assuming another efficiency boost from new technology equivalent to the gain from accelerators, an exascale system is achievable in 20 MW in about 9 years (2022). Most likely, we will see moderate gains placing us at exascale in 20 MW by about 2025. This is well beyond the goal of exascale by 2020 in 20MW.

The shell game. While the Green500 gives us loads of information we never had before, there is little information about the power budget of the components of a system. While knowing total power is helpful, knowing how the power is spent across the system is critical to acquisition decisions. Is the majority of the power budget used on the GPUs, the memory, the CPUs, the disks, the network? Most systems in the Green500 are designed from commodity parts assembled at scale. If we truly want to promote efficiency and enable people to make informed design decisions, we need more insight to the details of where power is spent in these larger systems. Is a system with lots of disk arrays more or less of a power hog than a system with lots of GPUs? I really have no idea. And I’ve been studying power for more than a decade.

Will HPC ever embrace power management? The benefit of power management is clear. Save energy. Work abounds showing energy savings can be achieved with little to no performance loss. Nonetheless, most supercomputers disable all power management. On the flip side, power management technologies such as Intel Turbo boost can increase performance maximally within thermal limits. In fact, the SuperMuc supercomputer in Munich, Germany was chastised by some in the community for enabling Turbo boost during their early benchmarking and thus potentially skewing their Linpack results.

Trying to adapt benchmarking methodologies to mitigate against gaming is welcome. Trying to adapt benchmarking methodologies to neutralize the effects of technologies that improve efficiency is counterproductive and I believe ultimately futile. Systems are gaining in complexity every day. They are larger, have more parts and parallelism, and more autonomy in every generation. Processors throttle themselves, and memories and GPUs will soon do the same. Power and performance will not be fixed between two successive runs in these types of dynamic, complex systems. We must develop evaluation methodologies that embrace complexity and non-determinism since they will eventually transcend our ability to adapt. Furthermore, in the long run, the complexity and non-determinism we are attempting to ignore will be essential to maximize performance. Only when we accept complexity and non-determinism as constants can we adopt power management in production systems.

The Future. Accelerators are here to say, but most computational scientists I know refuse to use them. I’m not sure which group will blink first, the hardware designers or the users. Perhaps the middleware folks will come to the rescue and make accelerators more programmable. In any case, I think we’ll see accelerators dominate the Green500 List until they are replaced by a new technology or abandoned by all.

In every talk I’ve seen by Intel and NVidia, the consensus seems to be we are still really in the first generation of accelerators with several significantly advanced generations to come. These next generations are faster, have more parallelism, more on-board memory, more power management, and are more tightly integrated with the board. This means above all more complexity. These systems will be even harder to program and evaluate. They will likely show modest efficiency gains in the Green500, but they will not match the percentage gains from the first generation placing exascale beyond the 2020 goal.

W

While we co-founders have provided a consistent vision, biannual installments of the Green500 List are the work of an army of dedicated students, researchers, and passionate crusaders for energy efficiency. Without selfless adoption by a much broader community, the Green500 List would have been a fleeting anecdote.

It’s been more than twelve years since I started down the Green HPC path. I honestly thought after four to five years we would have exhausted all the interesting problems in HPC efficiency. The Green500 List’s impact has greatly exceeded my expectations. The introduction of a stable and fair methodology to track efficiency has withstood nearly 7 years of scrutiny and highlighted the insatiable need for ongoing research. What I failed to appreciate in the beginning was that power efficiency as a problem would transform and perpetuate with every new generation of supercomputer. Like the challenges of performance, reliability, and security, power efficiency is here to stay.

About the Author

Kirk W. Cameron is a Professor of Computer Science and a Faculty Fellow in the College of Engineering at Virginia Tech. Prof. Cameron is a pioneer and leading expert in Green Computing. Cameron is the Green IT columnist for IEEE Computer, Green500 co-founder, founding member of SPECPower, EPA consultant, Uptime Institute Fellow, and co-founder of power management software startup company MiserWare. His power measurement and management software tools are used by nearly half a million people in more than 160 countries. Accolades for his work include NSF and DOE Career Awards, the IBM Faculty Award, and being named Innovator of the Week by Bloomberg Businessweek Magazine. Prof. Cameron received the Ph.D. in Computer Science from Louisiana State University (2000) and B.S. in Mathematics from the University of Florida (1994).

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

University of Chicago Researchers Generate First Computational Model of Entire SARS-CoV-2 Virus

January 15, 2021

Over the course of the last year, many detailed computational models of SARS-CoV-2 have been produced with the help of supercomputers, but those models have largely focused on critical elements of the virus, such as its Read more…

By Oliver Peckham

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Roar Supercomputer to Support Naval Aircraft Research

January 14, 2021

One might not think “aircraft” when picturing the U.S. Navy, but the military branch actually has thousands of aircraft currently in service – and now, supercomputing will help future naval aircraft operate faster, Read more…

By Staff report

DOE and NOAA Extend Computing Partnership, Plan for New Supercomputer

January 14, 2021

The National Climate-Computing Research Center (NCRC), hosted by Oak Ridge National Laboratory (ORNL), has been supporting the climate research of the National Oceanic and Atmospheric Administration (NOAA) for the last 1 Read more…

By Oliver Peckham

Using Micro-Combs, Researchers Demonstrate World’s Fastest Optical Neuromorphic Processor for AI

January 13, 2021

Neuromorphic computing, which uses chips that mimic the behavior of the human brain using virtual “neurons,” is growing in popularity thanks to high-profile efforts from Intel and others. Now, a team of researchers l Read more…

By Oliver Peckham

AWS Solution Channel

Now Available – Amazon EC2 C6gn Instances with 100 Gbps Networking

Amazon EC2 C6gn instances powered by AWS Graviton2 processors are now available!

Compared to C6g instances, this new instance type provides 4x higher network bandwidth, 4x higher packet processing performance, and 2x higher EBS bandwidth. Read more…

Intel® HPC + AI Pavilion

Intel Keynote Address

Intel is the foundation of HPC – from the workstation to the cloud to the backbone of the Top500. At SC20, Intel’s Trish Damkroger, VP and GM of high performance computing, addresses the audience to show how Intel and its partners are building the future of HPC today, through hardware and software technologies that accelerate the broad deployment of advanced HPC systems. Read more…

Honing In on AI, US Launches National Artificial Intelligence Initiative Office

January 13, 2021

To drive American leadership in the field of AI into the future, the National Artificial Intelligence Initiative Office has been launched by the White House Office of Science and Technology Policy (OSTP). The new agen Read more…

By Todd R. Weiss

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Intel ‘Ice Lake’ Server Chips in Production, Set for Volume Ramp This Quarter

January 12, 2021

Intel Corp. used this week’s virtual CES 2021 event to reassert its dominance of the datacenter with the formal roll out of its next-generation server chip, the 10nm Xeon Scalable processor that targets AI and HPC workloads. The third-generation “Ice Lake” family... Read more…

By George Leopold

Researchers Say It Won’t Be Possible to Control Superintelligent AI

January 11, 2021

Worries about out-of-control AI aren’t new. Many prominent figures have suggested caution when unleashing AI. One quote that keeps cropping up is (roughly) th Read more…

By John Russell

AMD Files Patent on New GPU Chiplet Approach

January 5, 2021

Advanced Micro Devices is accelerating the GPU chiplet race with the release of a U.S. patent application for a device that incorporates high-bandwidth intercon Read more…

By George Leopold

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Intel Touts Optane Performance, Teases Next-gen “Crow Pass”

January 5, 2021

Competition to leverage new memory and storage hardware with new or improved software to create better storage/memory schemes has steadily gathered steam during Read more…

By John Russell

Farewell 2020: Bleak, Yes. But a Lot of Good Happened Too

December 30, 2020

Here on the cusp of the new year, the catchphrase ‘2020 hindsight’ has a distinctly different feel. Good riddance, yes. But also proof of science’s power Read more…

By John Russell

Esperanto Unveils ML Chip with Nearly 1,100 RISC-V Cores

December 8, 2020

At the RISC-V Summit today, Art Swift, CEO of Esperanto Technologies, announced a new, RISC-V based chip aimed at machine learning and containing nearly 1,100 low-power cores based on the open-source RISC-V architecture. Esperanto Technologies, headquartered in... Read more…

By Oliver Peckham

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Leading Solution Providers

Contributors

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

At Oak Ridge, ‘End of Life’ Sometimes Isn’t

October 31, 2020

Sometimes, the old dog actually does go live on a farm. HPC systems are often cursed with short lifespans, as they are continually supplanted by the latest and Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chipmaker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the European Union begin scrutinizing the impact of the blockbuster deal on semiconductor industry competition and innovation, the deal has at the very least... Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This