Micron Exposes the Double Life of Memory with Automata Processor

By Nicole Hemsoth

November 22, 2013

If we had to take a pick from some of the most compelling announcements from SC13, the news from memory vendor (although that narrow distinction may soon change) Micron about its new Automata processor is at the top of the list. While at this point there’s still enough theory to lead us to file this under a technology to watch, the concept is unique in what it promises—both to Micron’s future and the accelerator/CPU space for some key HPC-oriented workloads.

In a nutshell, the Automata processor is a programmable silicon device that lends itself to handling high speed search and analysis across massive, complex, unstructured data. As an alternate processing engine for targeted areas, it taps into the inner parallelism inherent to memory to provide a robust and absolutely remarkable (if early benchmarks are to be believed) option for certain types of processing.

specs2

For starters, here’s what not to expect from Micron’s foray into the processor jungle. First, this is not something that will snap in to replace CPUs. Despite what some of the recent press elsewhere has described, these are a lot less like pure CPU competitors (at least at this point) and more like specialty accelerators (think FPGAs versus Xeons, for example).  These have been designed for a specific set of workloads, including network security, image processing, bioinformatics and select codes that propel the work of our three-letter overlords. The benefit here is that these are programmable, and in some ways reconfigurable and can chew on large-scale unstructured data analytics problems that the average conventional fixed word-width processors can’t always handle well.

Paul Dlugosch is director of Automata Processor Development in the Architecture Development Group of Micron’s DRAM division. “One thing people don’t understand well, aside from those memory researchers or people in this industry, is that any memory device is by nature a very highly parallel device. In fact, he says, “most of the power of that parallelism is left on the table and unused.”

He said that Micron has been stealthily developing their Automata technology for seven years—a process that was fed by a fundamental change in how they were thinking about memory’s role in large-scale systems. As Dlugosch told us, his company has been instrumental in rethinking memory with the Hybrid Memory Cube, but the memory wall needed some new ladders. The first rungs of which were those realizations that memory could be doing double-duty, so to speak.

At the beginning of their journey into automata territory, he said there were some fundamental questions about what caused the saturation of the memory interface and whether or not simply increasing bandwidth was the right approach. From there they started to think beyond the constraints of modern architectures in terms of how memory evolved in the first place.

Among the central questions are whether or not memory could be used as something other than a storage device. Further, the team set about investigating whether multicore concepts offered the shortest inroads to a high degree of parallelism. Also, they wondered if software that is comprised of sequential instructions and issued to an execution pipeline was a necessary component of systems or if there was a better way.

What’s most interesting about these lines of questioning is that his team started to realize that it might be possible that the memory wall was not erected because of memory bandwidth, but rather it was the symptom of a more profound root cause found elsewhere. That hidden weak point, said Dlugosch, is overall processor inefficiency. “What’s different about the automata processor is that rather than just trying to devise a means to transfer more information across a physical memory interface, we instead started asking why the mere need for high bandwidth is present.”

Micron Automata slide

The specs you see there are a bit difficult to make sense of since semiconductors aren’t often measured in this way. For example, placing value on how many path decisions can be made per second in a semiconductor device working on graph problems or executing non-deterministic finite automata is a bit esoteric, but even with a basic grasp consider that in one single Automata processor it has this capacity. And you’re not limited to one, either, since this is a scalable mechanism. The Automata director tells us that this is, in theory, as simple as adding more memory. In other words, one can put 8 Automata processors on a memory module–that memory module can then plug into a DIMM, and since you can have more than one it’s possible that it can scale this processing power just like memory.

What one can expect on the actual “real” use front is a fully developed SDK that will let end users compile automata and load those into the processor fabric, allowing them to execute as many automata in parallel against large datasets as the user can fit into one or more of the Automata processors. The idea here is that users will develop their own machines.

As one might imagine, however, the programming environment presents some significant challenges, but Micron is tapping into some of its early partners to make some inroads into this area. Their base low-level underpinnings are, as Dlugosch admitted, “not as expressive as we’d like it to be to get the full power from this chip,” but they’re working it via their own ANML (Automata Network Markup Language) to let users construct Automata machines programmatically or almost in the sense of a full custom design Micron supports via a visual workbench. “You can think of it like circuit design for the big data analytics machines that users want to deploy in the fabric,” he said.

Outside of the technology itself, one should note that Micron is leveraging an existing process and facility to manufacture this processor. In other words, despite the long R&D cycle behind it, the overhead for production looks to be relatively minimal.

Automata processing is a fringe concept, but one that was obscure enough for Micron to take to market in the name. “A lot of people aren’t familiar with automata,” said Dlugosch. “We thought about this a great deal before we decided to call this an automata processor—even though automata are implemented as conventional algorithms in a variety of ways in a variety of applications. They’re not always recognized as automata, but in the areas and end use cases we’re targeting they are and will be used and the concept of automata computing will become more common starting in the HPC space first.”

Even if many aren’t immediately familiar with automata, it’s Micron’s hope that its processor will drive recognition of this processor type into the mainstream—and hopefully directly into the laps of big government, life sciences and other companies in need of high performance large-scale data processing.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

RPI Powers Up ‘AiMOS’ AI Supercomputer

December 11, 2019

Designed to push the frontiers of computing chip and systems performance optimized for AI workloads, an 8 petaflops (Linpack) IBM Power9-based supercomputer has been unveiled in upstate New York that will be used by IBM Read more…

By Doug Black

At SC19: Developing a Digital Twin

December 11, 2019

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location to location. In such a world, there will also be a digita Read more…

By Aaron Dubrow

Supercomputers Help Predict Carbon Dioxide Levels

December 10, 2019

The Earth’s terrestrial ecosystems – its lands, forests, jungles and so on – are crucial “sinks” for atmospheric carbon, holding nearly 30 percent of our annual CO2 emissions as they breathe in the carbon-rich Read more…

By Oliver Peckham

Finally! SC19 Competitors Live and in Color!

December 10, 2019

You know the saying “better late than never”? That’s how my cluster competition coverage is faring this year. With SC19 coming late in November, quickly followed by my annual trip to South Africa to cover their clu Read more…

By Dan Olds

Intel’s Jim Clarke on its New Cryo-controller and why Intel isn’t Late to the Quantum Party

December 9, 2019

Intel today introduced the ‘first-of-its-kind’ cryo-controller chip for quantum computing and previewed a cryo-prober tool for characterizing quantum processor chips. The new controller is a mixed-signal SoC named Ho Read more…

By John Russell

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

GPU Scheduling and Resource Accounting: The Key to an Efficient AI Data Center

[Connect with LSF users and learn new skills in the IBM Spectrum LSF User Community!]

GPUs are the new CPUs

GPUs have become a staple technology in modern HPC and AI data centers. Read more…

What’s New in HPC Research: Natural Gas, Precision Agriculture, Neural Networks and More

December 6, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

RPI Powers Up ‘AiMOS’ AI Supercomputer

December 11, 2019

Designed to push the frontiers of computing chip and systems performance optimized for AI workloads, an 8 petaflops (Linpack) IBM Power9-based supercomputer has Read more…

By Doug Black

Intel’s Jim Clarke on its New Cryo-controller and why Intel isn’t Late to the Quantum Party

December 9, 2019

Intel today introduced the ‘first-of-its-kind’ cryo-controller chip for quantum computing and previewed a cryo-prober tool for characterizing quantum proces Read more…

By John Russell

On the Spack Track @SC19

December 5, 2019

At the annual supercomputing conference, SC19 in Denver, Colorado, there were Spack events each day of the conference. As a reflection of its grassroots heritage, nine sessions were planned by more than a dozen thought leaders from seven organizations, including three U.S. national Department of Energy (DOE) laboratories and Sylabs... Read more…

By Elizabeth Leake

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced com Read more…

By Tiffany Trader

AWS Debuts 7nm 2nd-Gen Graviton Arm Processor

December 3, 2019

The “x86 Big Bang,” in which market dominance of the venerable Intel CPU has exploded into fragments of processor options suited to varying workloads, has n Read more…

By Doug Black

Ride on the Wild Side – Squyres SC19 Mars Rovers Keynote

December 2, 2019

Reminding us of the deep and enabling connection between HPC and modern science is an important part of the SC Conference mission. And yes, HPC is a science its Read more…

By John Russell

NSCI Update – Adapting to a Changing Landscape

December 2, 2019

It was November of 2017 when we last visited the topic of the National Strategic Computing Initiative (NSCI). As you will recall, the NSCI was started with an Executive Order (E.O. No. 13702), that was issued by President Obama in July of 2015 and was followed by a Strategic Plan that was released in July of 2016. The question for November of 2017... Read more…

By Alex R. Larzelere

Tsinghua University Racks Up Its Ninth Student Cluster Championship Win at SC19

November 27, 2019

Tsinghua University has done it again. At SC19 last week, the eight-time gold medal-winner team took home the top prize in the 2019 Student Cluster Competition Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
CEJN
CJEN
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

Cerebras to Supply DOE with Wafer-Scale AI Supercomputing Technology

September 17, 2019

Cerebras Systems, which debuted its wafer-scale AI silicon at Hot Chips last month, has entered into a multi-year partnership with Argonne National Laboratory and Lawrence Livermore National Laboratory as part of a larger collaboration with the U.S. Department of Energy... Read more…

By Tiffany Trader

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This