Micron Exposes the Double Life of Memory with Automata Processor

By Nicole Hemsoth

November 22, 2013

If we had to take a pick from some of the most compelling announcements from SC13, the news from memory vendor (although that narrow distinction may soon change) Micron about its new Automata processor is at the top of the list. While at this point there’s still enough theory to lead us to file this under a technology to watch, the concept is unique in what it promises—both to Micron’s future and the accelerator/CPU space for some key HPC-oriented workloads.

In a nutshell, the Automata processor is a programmable silicon device that lends itself to handling high speed search and analysis across massive, complex, unstructured data. As an alternate processing engine for targeted areas, it taps into the inner parallelism inherent to memory to provide a robust and absolutely remarkable (if early benchmarks are to be believed) option for certain types of processing.

specs2

For starters, here’s what not to expect from Micron’s foray into the processor jungle. First, this is not something that will snap in to replace CPUs. Despite what some of the recent press elsewhere has described, these are a lot less like pure CPU competitors (at least at this point) and more like specialty accelerators (think FPGAs versus Xeons, for example).  These have been designed for a specific set of workloads, including network security, image processing, bioinformatics and select codes that propel the work of our three-letter overlords. The benefit here is that these are programmable, and in some ways reconfigurable and can chew on large-scale unstructured data analytics problems that the average conventional fixed word-width processors can’t always handle well.

Paul Dlugosch is director of Automata Processor Development in the Architecture Development Group of Micron’s DRAM division. “One thing people don’t understand well, aside from those memory researchers or people in this industry, is that any memory device is by nature a very highly parallel device. In fact, he says, “most of the power of that parallelism is left on the table and unused.”

He said that Micron has been stealthily developing their Automata technology for seven years—a process that was fed by a fundamental change in how they were thinking about memory’s role in large-scale systems. As Dlugosch told us, his company has been instrumental in rethinking memory with the Hybrid Memory Cube, but the memory wall needed some new ladders. The first rungs of which were those realizations that memory could be doing double-duty, so to speak.

At the beginning of their journey into automata territory, he said there were some fundamental questions about what caused the saturation of the memory interface and whether or not simply increasing bandwidth was the right approach. From there they started to think beyond the constraints of modern architectures in terms of how memory evolved in the first place.

Among the central questions are whether or not memory could be used as something other than a storage device. Further, the team set about investigating whether multicore concepts offered the shortest inroads to a high degree of parallelism. Also, they wondered if software that is comprised of sequential instructions and issued to an execution pipeline was a necessary component of systems or if there was a better way.

What’s most interesting about these lines of questioning is that his team started to realize that it might be possible that the memory wall was not erected because of memory bandwidth, but rather it was the symptom of a more profound root cause found elsewhere. That hidden weak point, said Dlugosch, is overall processor inefficiency. “What’s different about the automata processor is that rather than just trying to devise a means to transfer more information across a physical memory interface, we instead started asking why the mere need for high bandwidth is present.”

Micron Automata slide

The specs you see there are a bit difficult to make sense of since semiconductors aren’t often measured in this way. For example, placing value on how many path decisions can be made per second in a semiconductor device working on graph problems or executing non-deterministic finite automata is a bit esoteric, but even with a basic grasp consider that in one single Automata processor it has this capacity. And you’re not limited to one, either, since this is a scalable mechanism. The Automata director tells us that this is, in theory, as simple as adding more memory. In other words, one can put 8 Automata processors on a memory module–that memory module can then plug into a DIMM, and since you can have more than one it’s possible that it can scale this processing power just like memory.

What one can expect on the actual “real” use front is a fully developed SDK that will let end users compile automata and load those into the processor fabric, allowing them to execute as many automata in parallel against large datasets as the user can fit into one or more of the Automata processors. The idea here is that users will develop their own machines.

As one might imagine, however, the programming environment presents some significant challenges, but Micron is tapping into some of its early partners to make some inroads into this area. Their base low-level underpinnings are, as Dlugosch admitted, “not as expressive as we’d like it to be to get the full power from this chip,” but they’re working it via their own ANML (Automata Network Markup Language) to let users construct Automata machines programmatically or almost in the sense of a full custom design Micron supports via a visual workbench. “You can think of it like circuit design for the big data analytics machines that users want to deploy in the fabric,” he said.

Outside of the technology itself, one should note that Micron is leveraging an existing process and facility to manufacture this processor. In other words, despite the long R&D cycle behind it, the overhead for production looks to be relatively minimal.

Automata processing is a fringe concept, but one that was obscure enough for Micron to take to market in the name. “A lot of people aren’t familiar with automata,” said Dlugosch. “We thought about this a great deal before we decided to call this an automata processor—even though automata are implemented as conventional algorithms in a variety of ways in a variety of applications. They’re not always recognized as automata, but in the areas and end use cases we’re targeting they are and will be used and the concept of automata computing will become more common starting in the HPC space first.”

Even if many aren’t immediately familiar with automata, it’s Micron’s hope that its processor will drive recognition of this processor type into the mainstream—and hopefully directly into the laps of big government, life sciences and other companies in need of high performance large-scale data processing.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Google Cloud Makes Good on Promise to Add Nvidia P100 GPUs

September 21, 2017

Google has taken down the notice on its cloud platform website that says Nvidia Tesla P100s are “coming soon.” That's because the search giant has announced the beta launch of the high-end P100 Nvidia Tesla GPUs on t Read more…

By George Leopold

Cray Wins $48M Supercomputer Contract from KISTI

September 21, 2017

It was a good day for Cray which won a $48 million contract from the Korea Institute of Science and Technology Information (KISTI) for a 128-rack CS500 cluster supercomputer. The new system, equipped with Intel Xeon Scal Read more…

By John Russell

Adolfy Hoisie to Lead Brookhaven’s Computing for National Security Effort

September 21, 2017

Brookhaven National Laboratory announced today that Adolfy Hoisie will chair its newly formed Computing for National Security department, which is part of Brookhaven’s new Computational Science Initiative (CSI). Read more…

By John Russell

HPE Extreme Performance Solutions

HPE Prepares Customers for Success with the HPC Software Portfolio

High performance computing (HPC) software is key to harnessing the full power of HPC environments. Development and management tools enable IT departments to streamline installation and maintenance of their systems as well as create, optimize, and run their HPC applications. Read more…

PNNL’s Center for Advanced Tech Evaluation Seeks Wider HPC Community Ties

September 21, 2017

Two years ago the Department of Energy established the Center for Advanced Technology Evaluation (CENATE) at Pacific Northwest National Laboratory (PNNL). CENATE’s ambitious mission was to be a proving ground for near- Read more…

By John Russell

Stanford University and UberCloud Achieve Breakthrough in Living Heart Simulations

September 21, 2017

Cardiac arrhythmia can be an undesirable and potentially lethal side effect of drugs. During this condition, the electrical activity of the heart turns chaotic, Read more…

By Wolfgang Gentzsch, UberCloud, and Francisco Sahli, Stanford University

PNNL’s Center for Advanced Tech Evaluation Seeks Wider HPC Community Ties

September 21, 2017

Two years ago the Department of Energy established the Center for Advanced Technology Evaluation (CENATE) at Pacific Northwest National Laboratory (PNNL). CENAT Read more…

By John Russell

Exascale Computing Project Names Doug Kothe as Director

September 20, 2017

The Department of Energy’s Exascale Computing Project (ECP) has named Doug Kothe as its new director effective October 1. He replaces Paul Messina, who is stepping down after two years to return to Argonne National Laboratory. Kothe is a 32-year veteran of DOE’s National Laboratory System. Read more…

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blu Read more…

By Merle Giles

Kathy Yelick Charts the Promise and Progress of Exascale Science

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakthrough Science at the Exascale” at the ACM Europe Conference in Barcelona. In conjunction with her presentation, Yelick agreed to a short Q&A discussion with HPCwire. Read more…

By Tiffany Trader

DARPA Pledges Another $300 Million for Post-Moore’s Readiness

September 14, 2017

The Defense Advanced Research Projects Agency (DARPA) launched a giant funding effort to ensure the United States can sustain the pace of electronic innovation vital to both a flourishing economy and a secure military. Under the banner of the Electronics Resurgence Initiative (ERI), some $500-$800 million will be invested in post-Moore’s Law technologies. Read more…

By Tiffany Trader

IBM Breaks Ground for Complex Quantum Chemistry

September 14, 2017

IBM has reported the use of a novel algorithm to simulate BeH2 (beryllium-hydride) on a quantum computer. This is the largest molecule so far simulated on a quantum computer. The technique, which used six qubits of a seven-qubit system, is an important step forward and may suggest an approach to simulating ever larger molecules. Read more…

By John Russell

Cubes, Culture, and a New Challenge: Trish Damkroger Talks about Life at Intel—and Why HPC Matters More Than Ever

September 13, 2017

Trish Damkroger wasn’t looking to change jobs when she attended SC15 in Austin, Texas. Capping a 15-year career within Department of Energy (DOE) laboratories, she was acting Associate Director for Computation at Lawrence Livermore National Laboratory (LLNL). Her mission was to equip the lab’s scientists and research partners with resources that would advance their cutting-edge work... Read more…

By Jan Rowell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

Leading Solution Providers

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

GlobalFoundries: 7nm Chips Coming in 2018, EUV in 2019

June 13, 2017

GlobalFoundries has formally announced that its 7nm technology is ready for customer engagement with product tape outs expected for the first half of 2018. The Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This