Micron Exposes the Double Life of Memory with Automata Processor

By Nicole Hemsoth

November 22, 2013

If we had to take a pick from some of the most compelling announcements from SC13, the news from memory vendor (although that narrow distinction may soon change) Micron about its new Automata processor is at the top of the list. While at this point there’s still enough theory to lead us to file this under a technology to watch, the concept is unique in what it promises—both to Micron’s future and the accelerator/CPU space for some key HPC-oriented workloads.

In a nutshell, the Automata processor is a programmable silicon device that lends itself to handling high speed search and analysis across massive, complex, unstructured data. As an alternate processing engine for targeted areas, it taps into the inner parallelism inherent to memory to provide a robust and absolutely remarkable (if early benchmarks are to be believed) option for certain types of processing.

specs2

For starters, here’s what not to expect from Micron’s foray into the processor jungle. First, this is not something that will snap in to replace CPUs. Despite what some of the recent press elsewhere has described, these are a lot less like pure CPU competitors (at least at this point) and more like specialty accelerators (think FPGAs versus Xeons, for example).  These have been designed for a specific set of workloads, including network security, image processing, bioinformatics and select codes that propel the work of our three-letter overlords. The benefit here is that these are programmable, and in some ways reconfigurable and can chew on large-scale unstructured data analytics problems that the average conventional fixed word-width processors can’t always handle well.

Paul Dlugosch is director of Automata Processor Development in the Architecture Development Group of Micron’s DRAM division. “One thing people don’t understand well, aside from those memory researchers or people in this industry, is that any memory device is by nature a very highly parallel device. In fact, he says, “most of the power of that parallelism is left on the table and unused.”

He said that Micron has been stealthily developing their Automata technology for seven years—a process that was fed by a fundamental change in how they were thinking about memory’s role in large-scale systems. As Dlugosch told us, his company has been instrumental in rethinking memory with the Hybrid Memory Cube, but the memory wall needed some new ladders. The first rungs of which were those realizations that memory could be doing double-duty, so to speak.

At the beginning of their journey into automata territory, he said there were some fundamental questions about what caused the saturation of the memory interface and whether or not simply increasing bandwidth was the right approach. From there they started to think beyond the constraints of modern architectures in terms of how memory evolved in the first place.

Among the central questions are whether or not memory could be used as something other than a storage device. Further, the team set about investigating whether multicore concepts offered the shortest inroads to a high degree of parallelism. Also, they wondered if software that is comprised of sequential instructions and issued to an execution pipeline was a necessary component of systems or if there was a better way.

What’s most interesting about these lines of questioning is that his team started to realize that it might be possible that the memory wall was not erected because of memory bandwidth, but rather it was the symptom of a more profound root cause found elsewhere. That hidden weak point, said Dlugosch, is overall processor inefficiency. “What’s different about the automata processor is that rather than just trying to devise a means to transfer more information across a physical memory interface, we instead started asking why the mere need for high bandwidth is present.”

Micron Automata slide

The specs you see there are a bit difficult to make sense of since semiconductors aren’t often measured in this way. For example, placing value on how many path decisions can be made per second in a semiconductor device working on graph problems or executing non-deterministic finite automata is a bit esoteric, but even with a basic grasp consider that in one single Automata processor it has this capacity. And you’re not limited to one, either, since this is a scalable mechanism. The Automata director tells us that this is, in theory, as simple as adding more memory. In other words, one can put 8 Automata processors on a memory module–that memory module can then plug into a DIMM, and since you can have more than one it’s possible that it can scale this processing power just like memory.

What one can expect on the actual “real” use front is a fully developed SDK that will let end users compile automata and load those into the processor fabric, allowing them to execute as many automata in parallel against large datasets as the user can fit into one or more of the Automata processors. The idea here is that users will develop their own machines.

As one might imagine, however, the programming environment presents some significant challenges, but Micron is tapping into some of its early partners to make some inroads into this area. Their base low-level underpinnings are, as Dlugosch admitted, “not as expressive as we’d like it to be to get the full power from this chip,” but they’re working it via their own ANML (Automata Network Markup Language) to let users construct Automata machines programmatically or almost in the sense of a full custom design Micron supports via a visual workbench. “You can think of it like circuit design for the big data analytics machines that users want to deploy in the fabric,” he said.

Outside of the technology itself, one should note that Micron is leveraging an existing process and facility to manufacture this processor. In other words, despite the long R&D cycle behind it, the overhead for production looks to be relatively minimal.

Automata processing is a fringe concept, but one that was obscure enough for Micron to take to market in the name. “A lot of people aren’t familiar with automata,” said Dlugosch. “We thought about this a great deal before we decided to call this an automata processor—even though automata are implemented as conventional algorithms in a variety of ways in a variety of applications. They’re not always recognized as automata, but in the areas and end use cases we’re targeting they are and will be used and the concept of automata computing will become more common starting in the HPC space first.”

Even if many aren’t immediately familiar with automata, it’s Micron’s hope that its processor will drive recognition of this processor type into the mainstream—and hopefully directly into the laps of big government, life sciences and other companies in need of high performance large-scale data processing.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

RIKEN Post-K Supercomputer Named After Japan’s Tallest Peak

May 23, 2019

May 23 -- RIKEN President Hiroshi Matsumoto announced that the successor to the K computer will be named Fugaku, another name for Mount Fuji, which is the tallest mountain peak in Japan. Supercomputer Fugaku, developed b Read more…

By Tiffany Trader

Cray’s Emerging Market & Technology Director Arti Garg Peers Around HPC/AI Corner

May 23, 2019

In her position as emerging market and technology director at Cray, Arti Garg doesn't just have a front-row seat to the future of computing, she plays an active role in making that future happen. Key to Garg's role is understanding how deep learning scientists are using state-of-the-art HPC infrastructures and figuring out how to push those limits further. Read more…

By Tiffany Trader

Combining Machine Learning and Supercomputing to Ferret out Phishing Attacks

May 23, 2019

The relentless ingenuity that drives cyber hacking is a global engine that knows no rest. Anyone with a laptop and run-of-the-mill computer smarts can buy or rent a phishing kit and start attacking – or it can be done Read more…

By Doug Black

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

For decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Who’s Driving Your Car?

Delivering a fully autonomous driving (AD) vehicle remains a key priority for both manufacturers and technology firms (“firms”). However, passenger safety is now a top-of-mind concern due in great part, to fatalities resulting from driving tests over the past years. Read more…

TACC’s Upgraded Ranch Data Storage System Debuts New Features, Exabyte Potential

May 22, 2019

There's a joke attributed to comedian Steven Wright that goes, "You can't have everything. Where would you put it?" Users of advanced computing can likely relate to this. The exponential growth of data poses a steep challenge to efforts for its reliable storage. For over 12 years, the Ranch system at the Texas Advanced Computing Center... Read more…

By Jorge Salazar, TACC

Cray’s Emerging Market & Technology Director Arti Garg Peers Around HPC/AI Corner

May 23, 2019

In her position as emerging market and technology director at Cray, Arti Garg doesn't just have a front-row seat to the future of computing, she plays an active role in making that future happen. Key to Garg's role is understanding how deep learning scientists are using state-of-the-art HPC infrastructures and figuring out how to push those limits further. Read more…

By Tiffany Trader

Combining Machine Learning and Supercomputing to Ferret out Phishing Attacks

May 23, 2019

The relentless ingenuity that drives cyber hacking is a global engine that knows no rest. Anyone with a laptop and run-of-the-mill computer smarts can buy or re Read more…

By Doug Black

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

HPE to Acquire Cray for $1.3B

May 17, 2019

Venerable supercomputer pioneer Cray Inc. will be acquired by Hewlett Packard Enterprise for $1.3 billion under a definitive agreement announced this morning. T Read more…

By Doug Black & Tiffany Trader

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

CCC Offers Draft 20-Year AI Roadmap; Seeks Comments

May 14, 2019

Artificial Intelligence in all its guises has captured much of the conversation in HPC and general computing today. The White House, DARPA, IARPA, and Departmen Read more…

By John Russell

Cascade Lake Shows Up to 84 Percent Gen-on-Gen Advantage on STAC Benchmarking

May 13, 2019

The Securities Technology Analysis Center (STAC) issued a report Friday comparing the performance of Intel's Cascade Lake processors with previous-gen Skylake u Read more…

By Tiffany Trader

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Announcing four new HPC capabilities in Google Cloud Platform

April 15, 2019

When you’re running compute-bound or memory-bound applications for high performance computing or large, data-dependent machine learning training workloads on Read more…

By Wyatt Gorman, HPC Specialist, Google Cloud; Brad Calder, VP of Engineering, Google Cloud; Bart Sano, VP of Platforms, Google Cloud

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This