Mont Blanc Forges Cluster from Smartphone Chips

By Timothy Prickett Morgan

November 22, 2013

The Mont Blanc project, an effort by a number of European supercomputing centers and vendors that seeks to create an energy-efficient supercomputer based on ARM processors and GPU coprocessors, has put together its third prototype. That is one more step on the path to an exascale system.

The third generation machine, which is being shown off at the SC13 conference in Denver this week, is by far the most elegant one that the Mont Blanc project has created thus far. This prototype supercomputer actually bears the name of the project this time around, and was preceded by the Tibidabo and Petraforca clusters, which were based on a different collection of ARM processors and GPU accelerators.

Just because this design is elegant, don’t get the wrong idea, though. The Mont Blanc machine is still a prototype, cautions Alex Ramirez, leader of the Heterogeneous Architectures Research Group at BSC who heads up the Mont Blanc project.

“In order to make this a production product, we would have to go through at least one more generation,” he says.

It stands to reason that the Mont Blanc project is waiting for the day when 64-bit ARM chips with integrated interconnects and faster GPUs are available before going into production. But for now, software can be ported to these prototypes and things can be learned about where the performance bottlenecks are and what reliability issues there might be.

The exact size of the Mont Blanc prototype cluster has not been determined yet, but Ramirez says it will have two or three racks of ARM-powered nodes. “It will be big enough to make scalability and reliability claims, but we are trying to keep the cost down on a machine that is not a production system,” he says.

Mont-Blanc-blade-carrier

The server node in the Mont Blanc system is based on the Exynos 5 system-on-chip made by Samsung, which is a dual-core ARM Cortex-A15 with an ARM Mali-T604 GPU on the die. The ARM CPU portion of the system-on-chip has about twice the performance of the quad-core Cortex-A9 processor used on the Petraforca prototype that was put together earlier this year. (There were actually two versions, but the second one is more important.) That machine used Nvidia Tesla K20 GPU coprocessors to test out how a wimpy CPU and a brawny GPU might be married. Specifically, the ARM processors, which were Tegra 3 chips running at 1.3 GHz, were put into a Mini-ITX system board with one I/O slot that was linked to a PCI-Express switch that in turn had one GPU and one ConnectX-3 40 Gb/sec InfiniBand adapter card.

The dual-core Exynos 5 chip from Samsung is used in smartphones, runs at 1.7 GHz, and has a quad-core Mali-T604 GPU that supports OpenCL 1.1. It has a dual-channel DDR3 memory controller and a USB 3.0 to 1 Gb/sec Ethernet bridge. Each Mont Blanc node is a daughter card made by Samsung that has the CPU and GPU, 4 GB of memory (1.6 GHz DDR3), a microSD slot for flash storage, and a 1 Gb/sec Ethernet network interface. All of this is crammed onto a daughter card that is 3.3 by 3.2 inches that has 6.8 gigaflops of compute on the CPU and 25.5 gigaflops of compute on the GPU for something around 10 watts of power. That works out to around 3.2 gigaflops per watt at peak theoretical performance.

The Mont Blanc system is using the Bull B505 blade server carrier and the related blade server chassis and racks to house multiple ARM server nodes. In this case, the blade carrier is fitted with a custom backplane that has a Broadcom Ethernet crossbar switch on it that links fifteen of these ARM compute nodes together. Every blade in the carrier has an Ethernet bridge chip, made by ASIX Electronics, that converts the USB port into Ethernet and then lets it hook into that Broadcom switch in the carrier.

Here is how you stack up the Mont Blanc rack:

Mont-Blanc-system

In this particular setup, says Ramirez, the location had some power density and heat density restrictions, so it was limited to four Bull blade server chassis. But the system is designed to support up to six chassis if the datacenter has enough power and cooling.

Each blade has fifteen nodes, and is a cluster in its own right. The blade delivers on the order of 485 gigaflops of compute and will burn about 200 watts. (Ramirez is estimating because he has not actually been able to do the wall power test yet because the machines just came out of the factory a few days prior to SC13.) That works out to 2.4 gigaflops per watt or so after the overhead of the network is added in.

The 7U blade chassis can hold nine carrier blades, for a total of 135 compute nodes. That works out to 4.3 teraflops in the aggregate per chassis at around 2 kilowatts of power, or 2.2 gigaflops per watt. With two 36 port 10 Gb/sec Ethernet switches to link the chassis together and 40 Gb/sec uplinks to hook into other racks, a four-chassis rack would deliver 17.2 teraflops of computing in an 8.2 kilowatt power envelope, or about 2.1 gigaflops per watt. With six blade chassis, you can get 25.8 teraflops into a rack. That is 810 chips in total per rack, by the way, with a total of 1,620 ARM cores and 3,240 Mali GPU cores.

This Mont Blanc effort will get very interesting next year, when many different ARMv8 processors, sporting 64-bit memory addressing and integrated interconnects, become available from a variety of vendors, including AppliedMicro, Calxeda, AMD, and maybe others like Samsung. Many of the components that had to be woven together in this third prototype will be unnecessary, and the thermal efficiency of the cluster will presumably rise dramatically once these features are integrated on the chips. These future ARM chips will also come with server features, such as ECC memory protection and standard I/O interfaces like PCI-Express.

“There will be enough providers that at least one of them will have exactly the kind of part you want at any given time,” says Ramirez, a bit like a kid in a candy store.

The Mont Blanc project was established in October 2011 and is a five-year effort that is coordinated by the Barcelona Supercomputer Center in Spain. British chip maker ARM Holdings, French server maker Bull, French chip maker STMicroelectronics, and British compiler tool maker Allinea are vendor participants in the Mont Blanc consortium. The University of Bristol in England, the University of Stuttgart in Germany, and the CINECA consortium of universities in Italy are academic members of the group, and the CEA, BADW-LRZ, Juelich, and BSC supercomputer centers are also members. So are a number of other institutions that promote HPC in Europe, including Inria, GENCI, and CNRS.

Mont Blanc was originally a three year project with a relatively modest budget of €14.5 million, and it has secured an additional €8.1 million in funding from the European Commission to extend it two more years. The funds are not just being used to create an exascale design, but also to create a parallel programming environment that will run on hybrid ARM-GPU machines as well as creating check pointing software to run on the clusters.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

PRACEdays Strengthens European HPC Community Ties

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurr Read more…

By Doug Black

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Nvidia CEO Predicts AI ‘Cambrian Explosion’

May 25, 2017

The processing power and cloud access to developer tools used to train machine-learning models are making artificial intelligence ubiquitous across computing pl Read more…

By George Leopold

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays Strengthens European HPC Community Ties

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular Read more…

By John Russell

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This