Mont Blanc Forges Cluster from Smartphone Chips

By Timothy Prickett Morgan

November 22, 2013

The Mont Blanc project, an effort by a number of European supercomputing centers and vendors that seeks to create an energy-efficient supercomputer based on ARM processors and GPU coprocessors, has put together its third prototype. That is one more step on the path to an exascale system.

The third generation machine, which is being shown off at the SC13 conference in Denver this week, is by far the most elegant one that the Mont Blanc project has created thus far. This prototype supercomputer actually bears the name of the project this time around, and was preceded by the Tibidabo and Petraforca clusters, which were based on a different collection of ARM processors and GPU accelerators.

Just because this design is elegant, don’t get the wrong idea, though. The Mont Blanc machine is still a prototype, cautions Alex Ramirez, leader of the Heterogeneous Architectures Research Group at BSC who heads up the Mont Blanc project.

“In order to make this a production product, we would have to go through at least one more generation,” he says.

It stands to reason that the Mont Blanc project is waiting for the day when 64-bit ARM chips with integrated interconnects and faster GPUs are available before going into production. But for now, software can be ported to these prototypes and things can be learned about where the performance bottlenecks are and what reliability issues there might be.

The exact size of the Mont Blanc prototype cluster has not been determined yet, but Ramirez says it will have two or three racks of ARM-powered nodes. “It will be big enough to make scalability and reliability claims, but we are trying to keep the cost down on a machine that is not a production system,” he says.

Mont-Blanc-blade-carrier

The server node in the Mont Blanc system is based on the Exynos 5 system-on-chip made by Samsung, which is a dual-core ARM Cortex-A15 with an ARM Mali-T604 GPU on the die. The ARM CPU portion of the system-on-chip has about twice the performance of the quad-core Cortex-A9 processor used on the Petraforca prototype that was put together earlier this year. (There were actually two versions, but the second one is more important.) That machine used Nvidia Tesla K20 GPU coprocessors to test out how a wimpy CPU and a brawny GPU might be married. Specifically, the ARM processors, which were Tegra 3 chips running at 1.3 GHz, were put into a Mini-ITX system board with one I/O slot that was linked to a PCI-Express switch that in turn had one GPU and one ConnectX-3 40 Gb/sec InfiniBand adapter card.

The dual-core Exynos 5 chip from Samsung is used in smartphones, runs at 1.7 GHz, and has a quad-core Mali-T604 GPU that supports OpenCL 1.1. It has a dual-channel DDR3 memory controller and a USB 3.0 to 1 Gb/sec Ethernet bridge. Each Mont Blanc node is a daughter card made by Samsung that has the CPU and GPU, 4 GB of memory (1.6 GHz DDR3), a microSD slot for flash storage, and a 1 Gb/sec Ethernet network interface. All of this is crammed onto a daughter card that is 3.3 by 3.2 inches that has 6.8 gigaflops of compute on the CPU and 25.5 gigaflops of compute on the GPU for something around 10 watts of power. That works out to around 3.2 gigaflops per watt at peak theoretical performance.

The Mont Blanc system is using the Bull B505 blade server carrier and the related blade server chassis and racks to house multiple ARM server nodes. In this case, the blade carrier is fitted with a custom backplane that has a Broadcom Ethernet crossbar switch on it that links fifteen of these ARM compute nodes together. Every blade in the carrier has an Ethernet bridge chip, made by ASIX Electronics, that converts the USB port into Ethernet and then lets it hook into that Broadcom switch in the carrier.

Here is how you stack up the Mont Blanc rack:

Mont-Blanc-system

In this particular setup, says Ramirez, the location had some power density and heat density restrictions, so it was limited to four Bull blade server chassis. But the system is designed to support up to six chassis if the datacenter has enough power and cooling.

Each blade has fifteen nodes, and is a cluster in its own right. The blade delivers on the order of 485 gigaflops of compute and will burn about 200 watts. (Ramirez is estimating because he has not actually been able to do the wall power test yet because the machines just came out of the factory a few days prior to SC13.) That works out to 2.4 gigaflops per watt or so after the overhead of the network is added in.

The 7U blade chassis can hold nine carrier blades, for a total of 135 compute nodes. That works out to 4.3 teraflops in the aggregate per chassis at around 2 kilowatts of power, or 2.2 gigaflops per watt. With two 36 port 10 Gb/sec Ethernet switches to link the chassis together and 40 Gb/sec uplinks to hook into other racks, a four-chassis rack would deliver 17.2 teraflops of computing in an 8.2 kilowatt power envelope, or about 2.1 gigaflops per watt. With six blade chassis, you can get 25.8 teraflops into a rack. That is 810 chips in total per rack, by the way, with a total of 1,620 ARM cores and 3,240 Mali GPU cores.

This Mont Blanc effort will get very interesting next year, when many different ARMv8 processors, sporting 64-bit memory addressing and integrated interconnects, become available from a variety of vendors, including AppliedMicro, Calxeda, AMD, and maybe others like Samsung. Many of the components that had to be woven together in this third prototype will be unnecessary, and the thermal efficiency of the cluster will presumably rise dramatically once these features are integrated on the chips. These future ARM chips will also come with server features, such as ECC memory protection and standard I/O interfaces like PCI-Express.

“There will be enough providers that at least one of them will have exactly the kind of part you want at any given time,” says Ramirez, a bit like a kid in a candy store.

The Mont Blanc project was established in October 2011 and is a five-year effort that is coordinated by the Barcelona Supercomputer Center in Spain. British chip maker ARM Holdings, French server maker Bull, French chip maker STMicroelectronics, and British compiler tool maker Allinea are vendor participants in the Mont Blanc consortium. The University of Bristol in England, the University of Stuttgart in Germany, and the CINECA consortium of universities in Italy are academic members of the group, and the CEA, BADW-LRZ, Juelich, and BSC supercomputer centers are also members. So are a number of other institutions that promote HPC in Europe, including Inria, GENCI, and CNRS.

Mont Blanc was originally a three year project with a relatively modest budget of €14.5 million, and it has secured an additional €8.1 million in funding from the European Commission to extend it two more years. The funds are not just being used to create an exascale design, but also to create a parallel programming environment that will run on hybrid ARM-GPU machines as well as creating check pointing software to run on the clusters.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

UCSD, AIST Forge Tighter Alliance with AI-Focused MOU

January 18, 2018

The rich history of collaboration between UC San Diego and AIST in Japan is getting richer. The organizations entered into a five-year memorandum of understanding on January 10. The MOU represents the continuation of a 1 Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Tennessee), Satoshi Matsuoka (Tokyo Institute of Technology), Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown and Spectre security updates on the performance of popular H Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE and NREL Take Steps to Create a Sustainable, Energy-Efficient Data Center with an H2 Fuel Cell

As enterprises attempt to manage rising volumes of data, unplanned data center outages are becoming more common and more expensive. As the cost of downtime rises, enterprises lose out on productivity and valuable competitive advantage without access to their critical data. Read more…

Fostering Lustre Advancement Through Development and Contributions

January 17, 2018

Six months after organizational changes at Intel's High Performance Data (HPDD) division, most in the Lustre community have shed any initial apprehension around the potential changes that could affect or disrupt Lustre Read more…

By Carlos Aoki Thomaz

UCSD, AIST Forge Tighter Alliance with AI-Focused MOU

January 18, 2018

The rich history of collaboration between UC San Diego and AIST in Japan is getting richer. The organizations entered into a five-year memorandum of understandi Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Fostering Lustre Advancement Through Development and Contributions

January 17, 2018

Six months after organizational changes at Intel's High Performance Data (HPDD) division, most in the Lustre community have shed any initial apprehension aroun Read more…

By Carlos Aoki Thomaz

SRC Spends $200M on University Research Centers

January 16, 2018

The Semiconductor Research Corporation, as part of its JUMP initiative, has awarded $200 million to fund six research centers whose areas of focus span cognitiv Read more…

By John Russell

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This