Mont Blanc Forges Cluster from Smartphone Chips

By Timothy Prickett Morgan

November 22, 2013

The Mont Blanc project, an effort by a number of European supercomputing centers and vendors that seeks to create an energy-efficient supercomputer based on ARM processors and GPU coprocessors, has put together its third prototype. That is one more step on the path to an exascale system.

The third generation machine, which is being shown off at the SC13 conference in Denver this week, is by far the most elegant one that the Mont Blanc project has created thus far. This prototype supercomputer actually bears the name of the project this time around, and was preceded by the Tibidabo and Petraforca clusters, which were based on a different collection of ARM processors and GPU accelerators.

Just because this design is elegant, don’t get the wrong idea, though. The Mont Blanc machine is still a prototype, cautions Alex Ramirez, leader of the Heterogeneous Architectures Research Group at BSC who heads up the Mont Blanc project.

“In order to make this a production product, we would have to go through at least one more generation,” he says.

It stands to reason that the Mont Blanc project is waiting for the day when 64-bit ARM chips with integrated interconnects and faster GPUs are available before going into production. But for now, software can be ported to these prototypes and things can be learned about where the performance bottlenecks are and what reliability issues there might be.

The exact size of the Mont Blanc prototype cluster has not been determined yet, but Ramirez says it will have two or three racks of ARM-powered nodes. “It will be big enough to make scalability and reliability claims, but we are trying to keep the cost down on a machine that is not a production system,” he says.

Mont-Blanc-blade-carrier

The server node in the Mont Blanc system is based on the Exynos 5 system-on-chip made by Samsung, which is a dual-core ARM Cortex-A15 with an ARM Mali-T604 GPU on the die. The ARM CPU portion of the system-on-chip has about twice the performance of the quad-core Cortex-A9 processor used on the Petraforca prototype that was put together earlier this year. (There were actually two versions, but the second one is more important.) That machine used Nvidia Tesla K20 GPU coprocessors to test out how a wimpy CPU and a brawny GPU might be married. Specifically, the ARM processors, which were Tegra 3 chips running at 1.3 GHz, were put into a Mini-ITX system board with one I/O slot that was linked to a PCI-Express switch that in turn had one GPU and one ConnectX-3 40 Gb/sec InfiniBand adapter card.

The dual-core Exynos 5 chip from Samsung is used in smartphones, runs at 1.7 GHz, and has a quad-core Mali-T604 GPU that supports OpenCL 1.1. It has a dual-channel DDR3 memory controller and a USB 3.0 to 1 Gb/sec Ethernet bridge. Each Mont Blanc node is a daughter card made by Samsung that has the CPU and GPU, 4 GB of memory (1.6 GHz DDR3), a microSD slot for flash storage, and a 1 Gb/sec Ethernet network interface. All of this is crammed onto a daughter card that is 3.3 by 3.2 inches that has 6.8 gigaflops of compute on the CPU and 25.5 gigaflops of compute on the GPU for something around 10 watts of power. That works out to around 3.2 gigaflops per watt at peak theoretical performance.

The Mont Blanc system is using the Bull B505 blade server carrier and the related blade server chassis and racks to house multiple ARM server nodes. In this case, the blade carrier is fitted with a custom backplane that has a Broadcom Ethernet crossbar switch on it that links fifteen of these ARM compute nodes together. Every blade in the carrier has an Ethernet bridge chip, made by ASIX Electronics, that converts the USB port into Ethernet and then lets it hook into that Broadcom switch in the carrier.

Here is how you stack up the Mont Blanc rack:

Mont-Blanc-system

In this particular setup, says Ramirez, the location had some power density and heat density restrictions, so it was limited to four Bull blade server chassis. But the system is designed to support up to six chassis if the datacenter has enough power and cooling.

Each blade has fifteen nodes, and is a cluster in its own right. The blade delivers on the order of 485 gigaflops of compute and will burn about 200 watts. (Ramirez is estimating because he has not actually been able to do the wall power test yet because the machines just came out of the factory a few days prior to SC13.) That works out to 2.4 gigaflops per watt or so after the overhead of the network is added in.

The 7U blade chassis can hold nine carrier blades, for a total of 135 compute nodes. That works out to 4.3 teraflops in the aggregate per chassis at around 2 kilowatts of power, or 2.2 gigaflops per watt. With two 36 port 10 Gb/sec Ethernet switches to link the chassis together and 40 Gb/sec uplinks to hook into other racks, a four-chassis rack would deliver 17.2 teraflops of computing in an 8.2 kilowatt power envelope, or about 2.1 gigaflops per watt. With six blade chassis, you can get 25.8 teraflops into a rack. That is 810 chips in total per rack, by the way, with a total of 1,620 ARM cores and 3,240 Mali GPU cores.

This Mont Blanc effort will get very interesting next year, when many different ARMv8 processors, sporting 64-bit memory addressing and integrated interconnects, become available from a variety of vendors, including AppliedMicro, Calxeda, AMD, and maybe others like Samsung. Many of the components that had to be woven together in this third prototype will be unnecessary, and the thermal efficiency of the cluster will presumably rise dramatically once these features are integrated on the chips. These future ARM chips will also come with server features, such as ECC memory protection and standard I/O interfaces like PCI-Express.

“There will be enough providers that at least one of them will have exactly the kind of part you want at any given time,” says Ramirez, a bit like a kid in a candy store.

The Mont Blanc project was established in October 2011 and is a five-year effort that is coordinated by the Barcelona Supercomputer Center in Spain. British chip maker ARM Holdings, French server maker Bull, French chip maker STMicroelectronics, and British compiler tool maker Allinea are vendor participants in the Mont Blanc consortium. The University of Bristol in England, the University of Stuttgart in Germany, and the CINECA consortium of universities in Italy are academic members of the group, and the CEA, BADW-LRZ, Juelich, and BSC supercomputer centers are also members. So are a number of other institutions that promote HPC in Europe, including Inria, GENCI, and CNRS.

Mont Blanc was originally a three year project with a relatively modest budget of €14.5 million, and it has secured an additional €8.1 million in funding from the European Commission to extend it two more years. The funds are not just being used to create an exascale design, but also to create a parallel programming environment that will run on hybrid ARM-GPU machines as well as creating check pointing software to run on the clusters.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

UK to Launch Six Major HPC Centers

March 27, 2017

Six high performance computing centers will be formally launched in the U.K. later this week intended to provide wider access to HPC resources to U.K. Read more…

By John Russell

AI in the News: Rao in at Intel, Ng out at Baidu, Nvidia on at Tencent Cloud

March 26, 2017

Just as AI has become the leitmotif of the advanced scale computing market, infusing much of the conversation about HPC in commercial and industrial spheres, it also is impacting high-level management changes in the industry. Read more…

By Doug Black

Scalable Informatics Ceases Operations

March 23, 2017

On the same day we reported on the uncertain future for HPC compiler company PathScale, we are sad to learn that another HPC vendor, Scalable Informatics, is closing its doors. Read more…

By Tiffany Trader

‘Strategies in Biomedical Data Science’ Advances IT-Research Synergies

March 23, 2017

“Strategies in Biomedical Data Science: Driving Force for Innovation” by Jay A. Etchings is both an introductory text and a field guide for anyone working with biomedical data. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Quants Achieving Maximum Compute Power without the Learning Curve

The financial services industry is a fast-paced and data-intensive environment, and financial firms are realizing that they must modernize their IT infrastructures and invest in high performance computing (HPC) tools in order to survive. Read more…

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Google Launches New Machine Learning Journal

March 22, 2017

On Monday, Google announced plans to launch a new peer review journal and “ecosystem” Read more…

By John Russell

Swiss Researchers Peer Inside Chips with Improved X-Ray Imaging

March 22, 2017

Peering inside semiconductor chips using x-ray imaging isn’t new, but the technique hasn’t been especially good or easy to accomplish. Read more…

By John Russell

LANL Simulation Shows Massive Black Holes Break ‘Speed Limit’

March 21, 2017

A new computer simulation based on codes developed at Los Alamos National Laboratory (LANL) is shedding light on how supermassive black holes could have formed in the early universe contrary to most prior models which impose a limit on how fast these massive ‘objects’ can form. Read more…

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

Nvidia Debuts HGX-1 for Cloud; Announces Fujitsu AI Deal

March 9, 2017

On Monday Nvidia announced a major deal with Fujitsu to help build an AI supercomputer for RIKEN using 24 DGX-1 servers. Read more…

By John Russell

HPC4Mfg Advances State-of-the-Art for American Manufacturing

March 9, 2017

Last Friday (March 3, 2017), the High Performance Computing for Manufacturing (HPC4Mfg) program held an industry engagement day workshop in San Diego, bringing together members of the US manufacturing community, national laboratories and universities to discuss the role of high-performance computing as an innovation engine for American manufacturing. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Leading Solution Providers

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This