Carver Mead on Quantum Computing and Neuromorphic Design

By Tiffany Trader

November 25, 2013

Computer scientist, inventor and university physicist Carver Mead is perhaps best known for coining the phrase “Moore’s law,” helping to popularize Gordon Moore’s 1965 observation that the number of transistors on an integrated circuit doubles about every 24 months. Mead was also instrumental in the prediction’s tremendous staying power.

One of Mead’s most significant contributions to computing was a technique called very large-scale integration (VLSI), which enabled tens of thousands of transistors to be fitted onto a single silicon chip. In 1979, Mead taught the world’s first VLSI design course and created the first software compilation of a silicon chip. His 1980 textbook “Introduction to VLSI Design,” coauthored by Lynn Conway, launched the Mead and Conway Revolution. Mead and his contemporaries set the stage for the “microchip revolution” in the Pacific Northwest. His methods of complex chip design have catalyzed decades of progress.

In the 1980s, Mead grew frustrated with the limits of traditional CPU design, and turned to mammalian brains for inspiration. Three decades hence, this field of neuromorphic computing is back in the spotlight with efforts like the Human Brain Project. Mead, now 79, maintains a professor emeritus position at Caltech, where he taught for over forty years. In a recent interview with MIT Technology Review, Mead details why it’s important for computer engineers to explore new forms of computing.

In Mead’s view, one of the thorniest challenges for the chip industry is power dissipation. For decades now, the focus has been on faster and faster chips, but the heat issue can’t be ignored. Mead notes that “It’s a common theme in technology evolution that what makes a group or company or field successful becomes an impediment to the next generation. … Everyone was richly rewarded for making things run faster and faster with lots of power. Going to multicore chips helped, but now we’re up to eight cores and it doesn’t look like we can go much further. People have to crash into the wall before they pay attention.”

These limitations are what prompted his interest in neuromorphic designs. “I was thinking about how you would make massively parallel systems, and the only examples we had were in the brains of animals,” he tells MIT Technology Review, “We built lots of systems. We did retinas, cochleas—a lot of things worked. A lot of my students are still working on this. But it’s a much bigger task than I had thought going in.”

Mead is also directing his energy into developing a unified framework to explain both electromagnetic and quantum systems. This is summarized in his book Collective Electrodynamics. Mead is skeptical, yet supportive, of current quantum computing projects.

“We don’t know what a new electronic device is going to be. But there’s very little quantum about transistors,” he says. “I’m not close to it, but I’m generally supportive of these people doing what they call quantum computing. People have got into trying to build real things based on quantum coupling, and any time people try to build stuff that actually works, they’re going to learn a hell of a lot. That’s where new science really comes from.”

Mead’s viewpoint is refreshing and inspirational. He reminds us that all new technologies start small before becoming “part of the infrastructure that we take for granted.” Even “the transistor was [once] a tiny little wart off a big industry,” he quips.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

InfiniBand Still Tops in Supercomputing

July 19, 2018

In the competitive global HPC landscape, system and processor vendors, nations and end user sites certainly get a lot of attention--deservedly so--but more than ever, the network plays a crucial role. While fast, perform Read more…

By Tiffany Trader

HPC for Life: Genomics, Brain Research, and Beyond

July 19, 2018

During the past few decades, the life sciences have witnessed one landmark discovery after another with the aid of HPC, paving the way toward a new era of personalized treatments based on an individual’s genetic makeup Read more…

By Warren Froelich

WCRP’s New Strategic Plan for Climate Research Highlights the Importance of HPC

July 19, 2018

As climate modeling increasingly leverages exascale computing and researchers warn of an impending computing gap in climate research, the World Climate Research Programme (WCRP) is developing its new Strategic Plan – and high-performance computing is slated to play a critical role. Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Are Your Software Licenses Impeding Your Productivity?

In my previous article, Improving chip yield rates with cognitive manufacturing, I highlighted the costs associated with semiconductor manufacturing, and how cognitive methods can yield benefits in both design and manufacture.  Read more…

U.S. Exascale Computing Project Releases Software Technology Progress Report

July 19, 2018

As is often noted the race to exascale computing isn’t just about hardware. This week the U.S. Exascale Computing Project (ECP) released its latest Software Technology (ST) Capability Assessment Report detailing progress so far. Read more…

By John Russell

InfiniBand Still Tops in Supercomputing

July 19, 2018

In the competitive global HPC landscape, system and processor vendors, nations and end user sites certainly get a lot of attention--deservedly so--but more than Read more…

By Tiffany Trader

HPC for Life: Genomics, Brain Research, and Beyond

July 19, 2018

During the past few decades, the life sciences have witnessed one landmark discovery after another with the aid of HPC, paving the way toward a new era of perso Read more…

By Warren Froelich

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

AI Thought Leaders on Capitol Hill

July 14, 2018

On Thursday, July 12, the House Committee on Science, Space, and Technology heard from four academic and industry leaders – representatives from Berkeley Lab, Argonne Lab, GE Global Research and Carnegie Mellon University – on the opportunities springing from the intersection of machine learning and advanced-scale computing. Read more…

By Tiffany Trader

HPC Serves as a ‘Rosetta Stone’ for the Information Age

July 12, 2018

In an age defined and transformed by its data, several large-scale scientific instruments around the globe might be viewed as a ‘mother lode’ of precious data. With names seemingly created for a ‘techno-speak’ glossary, these interferometers, cyclotrons, sequencers, solenoids, satellite altimeters, and cryo-electron microscopes are churning out data in previously unthinkable and seemingly incomprehensible quantities -- billions, trillions and quadrillions of bits and bytes of electro-magnetic code. Read more…

By Warren Froelich

Tsinghua Powers Through ISC18 Field

July 10, 2018

Tsinghua University topped all other competitors at the ISC18 Student Cluster Competition with an overall score of 88.43 out of 100. This gives Tsinghua their s Read more…

By Dan Olds

HPE, EPFL Launch Blue Brain 5 Supercomputer

July 10, 2018

HPE and the Ecole Polytechnique Federale de Lausannne (EPFL) Blue Brain Project yesterday introduced Blue Brain 5, a new supercomputer built by HPE, which displ Read more…

By John Russell

Pumping New Life into HPC Clusters, the Case for Liquid Cooling

July 10, 2018

High Performance Computing (HPC) faces some daunting challenges in the coming years as traditional, industry-standard systems push the boundaries of data center Read more…

By Scott Tease

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This