Cray Cluster Connect (C3) Lustre Storage for Linux

November 25, 2013

Cray’s expert storage solutions are now available for popular x86 Linux clusters.  Cray Cluster Connect (C3) offers a complete Lustre storage solution for x86 Linux. C3 brings Supercomputing-class scalability to data- and I/O-hungry Linux clusters.

Cray’s approach to I/O optimization builds on holistic system expertise developed across the entire I/O stack, from applications down to storage.  Most storage vendors have expertise in a single specialized area (typically block or file storage). Cray’s expertise spans three interdependent disciplines—compute, networking, and storage—coming together to form adaptive yet massively scalable storage solutions.

Cray optimizes I/O through:

  1. Application workload profiling:  ensuring the I/O pattern is well characterized for optimal performance
  2. End-to-end system architectures:  all aspects of the system – compute, networking, and storage – are optimized for applications
  3. I/O testing and qualification at scale:  Cray pre-qualifies and extensively tests systems against a wide variety of I/O characteristics to simulate user I/O patterns.

Cray storage solutions are well suited to data hungry supercomputers and x86 Linux clusters.  Cray works proactively with customers to understand the application and I/O requirements.  “Cray makes sure the storage solution meets the customer’s requirements, “ says Mark Swan, principal performance engineer at Cray.  “If a customer’s workloads are not taking full advantage of available bandwidth, simply adding hardware or software is a Band-Aid. However, I have seen far too many customer workloads that do not perform the kinds of optimal I/O that would take advantage of the file system’s capabilities and that has nothing to do with fast or slow zones.”

Through Cray Cluster Connect (C3), Cray delivers complete Lustre storage solutions for popular x86 Linux clusters.  Customers choose their storage platform (Cray Sonexion, DDN SFA, or NetApp E-Series) and Cray optimizes the I/O and throughput.   Unlike conventional storage solution providers, Cray is able to optimize the I/O up the entire stack, from the storage up to the client.

“Cray configures systems to be extremely flexible from a purely I/O perspective,” says senior Cray engineer, John Kaitschuck. “We can configure as much capacity and I/O bandwidth as needed by a customer for a given application and couple that with a properly configured compute capability to achieve the desired I/O-to-compute balance for a given application.”

The type of I/O and application often dictates the network and storage design. “By proper analysis of the workload profile and configuration of the required associated capacity and bandwidth, Cray is able to optimally scale I/O as a customer’s needs grow,” adds Kaitschuck.

Workloads often fight for bandwidth—and I/O contention can take many forms.  “Cray storage architectures provide multiple pathways for data so that there is no single point of failure and no single point of contention,” says Swan.  “We also devise techniques so that I/O contention in one part of the file system does not interfere with other parts of the file system.  These techniques not only isolate failures but also isolate areas of contention from affecting the entire workload.”

“Cray is continually developing utilities to analyze the I/O path,” says Steve Woods, a senior practice leader in Cray’s storage division.  “Infiniband monitoring ensures there are no errors that might affect the performance of the network and to ensure the fabric operates at its anticipated bandwidth.”

“This testing includes a wide variety of I/O characteristics,” says Woods.  “Our tests simulate user I/O patterns. This testing is constantly evolving because of changes in hardware as it relates to disk drives, arrays, servers, and even the network interconnect technologies. Not only are various combinations of hardware are tested but in addition the various levels of software are also tested to insure there are no performance regressions associated with the different layers of software.”

Optimizing the I/O system is often related to improper tuning.  Tuning can be related to clients, networks, and storage.  This may be as simple as increasing certain buffers or balancing parameters for caching or command sequence to disk. In the case of routed I/O, like LNET routing in Lustre, various parameters may need tuning to handle peak small data floods or large streaming of data.”

Cray’s solutions ensure “full performance access” to the I/O subsystem, minimizing bottlenecks in the architecture, says Woods.  “This work includes analyzing the performance of all components of the IO subsystem—from LUNs to controllers to servers to networks across routers (if required) and to the clients. Part of the analysis includes testing and turning the software stack”, he added.

Cray also offers its own scalable storage line, Cray Sonexion.  Sonexion scales I/O bandwidth in lock-step with storage capacity.   The basic unit of storage in Sonexion—including performance and capacity—is the Scalable Storage Unit (SSU).  An SSU combines high capacity, high density storage with two all-active embedded controllers serving Lustre performance.   For customers that need to add more capacity than performance, Cray offers Expansion Storage Units (ESUs).

In cases where customers need to optimize capacity or performance for a given workload, the Lustre™ File System by Cray (CLFS) can be utilized with DDN SFA or NetApp E-Series storage.  Lustre solutions by Cray are installed separately on x86 servers and provides a high degree of configuration flexibility.

Cray storage solutions help customers utilize the right storage and get results faster.  The Cray storage solution at the NCSA Blue Waters provides an example of I/O optimization at the petascale, for diverse applications. “During the Blue Waters acceptance period,” according to Swan, “Cray worked with the PSDNS turbulence application.  By analyzing its check-pointing methods, Cray optimized the I/O path to reduce check-pointing and application runtime.”

Since Cray fully tests and qualifies all solutions, users obtain an optimal experience, where I/O can be scaled as needed, and systems work as specified.   The product of the all the hard work done by Cray is that systems operate predictably.  By giving customers choice in a storage platform, the ROI matches the customers’ requirements.  In petascale scenarios, Cray reduces the storage footprint by up to 50%–and scales I/O to 1TB/s in a single file system.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Google Cloud Makes Good on Promise to Add Nvidia P100 GPUs

September 21, 2017

Google has taken down the notice on its cloud platform website that says Nvidia Tesla P100s are “coming soon.” That's because the search giant has announced the beta launch of the high-end P100 Nvidia Tesla GPUs on t Read more…

By George Leopold

Cray Wins $48M Supercomputer Contract from KISTI

September 21, 2017

It was a good day for Cray which won a $48 million contract from the Korea Institute of Science and Technology Information (KISTI) for a 128-rack CS500 cluster supercomputer. The new system, equipped with Intel Xeon Scal Read more…

By John Russell

Adolfy Hoisie to Lead Brookhaven’s Computing for National Security Effort

September 21, 2017

Brookhaven National Laboratory announced today that Adolfy Hoisie will chair its newly formed Computing for National Security department, which is part of Brookhaven’s new Computational Science Initiative (CSI). Read more…

By John Russell

HPE Extreme Performance Solutions

HPE Prepares Customers for Success with the HPC Software Portfolio

High performance computing (HPC) software is key to harnessing the full power of HPC environments. Development and management tools enable IT departments to streamline installation and maintenance of their systems as well as create, optimize, and run their HPC applications. Read more…

PNNL’s Center for Advanced Tech Evaluation Seeks Wider HPC Community Ties

September 21, 2017

Two years ago the Department of Energy established the Center for Advanced Technology Evaluation (CENATE) at Pacific Northwest National Laboratory (PNNL). CENATE’s ambitious mission was to be a proving ground for near- Read more…

By John Russell

Stanford University and UberCloud Achieve Breakthrough in Living Heart Simulations

September 21, 2017

Cardiac arrhythmia can be an undesirable and potentially lethal side effect of drugs. During this condition, the electrical activity of the heart turns chaotic, Read more…

By Wolfgang Gentzsch, UberCloud, and Francisco Sahli, Stanford University

PNNL’s Center for Advanced Tech Evaluation Seeks Wider HPC Community Ties

September 21, 2017

Two years ago the Department of Energy established the Center for Advanced Technology Evaluation (CENATE) at Pacific Northwest National Laboratory (PNNL). CENAT Read more…

By John Russell

Exascale Computing Project Names Doug Kothe as Director

September 20, 2017

The Department of Energy’s Exascale Computing Project (ECP) has named Doug Kothe as its new director effective October 1. He replaces Paul Messina, who is stepping down after two years to return to Argonne National Laboratory. Kothe is a 32-year veteran of DOE’s National Laboratory System. Read more…

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blu Read more…

By Merle Giles

Kathy Yelick Charts the Promise and Progress of Exascale Science

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakthrough Science at the Exascale” at the ACM Europe Conference in Barcelona. In conjunction with her presentation, Yelick agreed to a short Q&A discussion with HPCwire. Read more…

By Tiffany Trader

DARPA Pledges Another $300 Million for Post-Moore’s Readiness

September 14, 2017

The Defense Advanced Research Projects Agency (DARPA) launched a giant funding effort to ensure the United States can sustain the pace of electronic innovation vital to both a flourishing economy and a secure military. Under the banner of the Electronics Resurgence Initiative (ERI), some $500-$800 million will be invested in post-Moore’s Law technologies. Read more…

By Tiffany Trader

IBM Breaks Ground for Complex Quantum Chemistry

September 14, 2017

IBM has reported the use of a novel algorithm to simulate BeH2 (beryllium-hydride) on a quantum computer. This is the largest molecule so far simulated on a quantum computer. The technique, which used six qubits of a seven-qubit system, is an important step forward and may suggest an approach to simulating ever larger molecules. Read more…

By John Russell

Cubes, Culture, and a New Challenge: Trish Damkroger Talks about Life at Intel—and Why HPC Matters More Than Ever

September 13, 2017

Trish Damkroger wasn’t looking to change jobs when she attended SC15 in Austin, Texas. Capping a 15-year career within Department of Energy (DOE) laboratories, she was acting Associate Director for Computation at Lawrence Livermore National Laboratory (LLNL). Her mission was to equip the lab’s scientists and research partners with resources that would advance their cutting-edge work... Read more…

By Jan Rowell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

Leading Solution Providers

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

GlobalFoundries: 7nm Chips Coming in 2018, EUV in 2019

June 13, 2017

GlobalFoundries has formally announced that its 7nm technology is ready for customer engagement with product tape outs expected for the first half of 2018. The Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This