HPC and Science & Technology Policy

By Gary M. Johnson

November 26, 2013

Policies, like sausages, cease to inspire respect in proportion as we know how they are made. This is a loose paraphrase of a common analogy. Is it apt when applied to science and technology policy? In particular, how – and where – is HPC policy made? Is it currently being made at all?

Given the number of HPC issues currently on the table and in competition for scarce federal resources, perhaps we should set aside any lack of respect for the process and get engaged in the sausage making. We need clear federal policy guidance to allocate resources and mobilize the technology agencies to advance HPC and its applications. Some suggestions for HPC community action to improve this situation are included.

Moments in S&T Policy

To put the current S&T policy situation in context and to help frame issues, consider this (very) short list of notable S&T policy moments. Note that they are all linked to global conflicts.

National Advisory Committee for Aeronautics (NACA) – 3 March 1915

NACA, the progenitor of NASA, was created during World War I as a reaction to the advances being made in Europe in the new field of aeronautics. It was feared that the US would lose its early lead in aeronautics and that this would have not only military but economic consequences. Consequently, the US created a federally funded organization whose core mission embraced cooperation with industry. This event, unique in our history, is reported to have “slipped through” the legislative process “almost unnoticed as a rider attached to the Naval Appropriation Bill, on 3 March 1915”.  As they say, the rest is history.  NACA/NASA, working in cooperation with the US aeronautics industry, yielded fantastic results.

Science: The Endless Frontier – 25 July 1945

World War II saw the next surge in science and technology. Adding to the laboratories operated by NACA, many further elements of our current federal R&D infrastructure were put in place. At the end of the war, Vannevar Bush, who headed the Office of Scientific Research and Development (OSRD) – which coordinated almost all wartime military R&D, including initiation and early administration of the Manhattan Project – produced the seminal S&T policy document entitled Science: The Endless Frontier. It contained a very interesting “program for action”.  Here are a few excerpts (emphasis ours):

The Government should accept new responsibilities for promoting the flow of new scientific knowledge and the development of scientific talent in our youth. These responsibilities are the proper concern of the Government, for they vitally affect our health, our jobs, and our national security.  …

The effective discharge of these new responsibilities will require the full attention of some over-all agency devoted to that purpose.  

On the wisdom with which we bring science to bear in the war against disease, in the creation of new industries, and in the strengthening of our Armed Forces depends in large measure our future as a nation.

Bush, who was in effect the country’s first presidential science advisor, didn’t get everything he asked for.   No “over-all agency” was created, but the case he made did lead to the creation of the National Science Foundation and Science: The Endless Frontier has constituted the S&T policy basis for all subsequent developments.

In the wrangling that followed Bush’s recommendations, we got a civilian agency focused on supporting university-based research and, to a lesser extent, education.  The military proceeded independently to enlarge its research complex.  Any expansion to other agencies of the NACA-style collaboration with civilian industry fell through the cracks.

Sputnik – 4 October 1957

Our final S&T policy moment is drawn from the Cold War period.  When the Soviet Union launched the first artificial Earth satellite, Sputnik, the event sent shock waves through the US public.  Government actions, spurred on by public reaction to the Sputnik crisis, led to:

So, thanks to the Cold War and Sputnik, we got: a big boost to S&T related education; an expansion of military R&D; and the extension of NACA-style collaboration with industry into the new NASA and for peaceful uses of space.

Beyond NASA, civilian technology agencies, in large measure, still lacked any core mission elements authorizing – and thus protecting – direct collaborations with industry.  This ends our story and is basically the end of significant S&T policy developments in the US.

Today, we have a national S&T policy that hasn’t changed much since the early days of the Cold War.  Perhaps its biggest shortcoming is that, beyond NASA, it doesn’t really empower strong collaborations between federal S&T agencies and American industries.  Inside the Capital Beltway, mission trumps all other considerations.  If S&T agencies engage in activities without direct and obvious linkages to their core missions, they may endanger their budget appropriations.

No agency has the mission to advance HPC.  Several agencies engage in HPC R&D to advance other mission elements, but no agency has advancing HPC itself (like NASA advances aeronautics and space technologies) as a core mission element.

S&T Policy Players

S&T policy is a game that anyone can play – and many do.  Thus, there is no shortage of literature on this topic and there are lots of players, both inside and outside the federal government.  So that your eyes don’t glaze over, we’ll limit the discussion here to mentioning just a few of the main federal players.  We’ve included a short appendix at the end of this article containing some additional information about the players.  Please consult it to make this section less cryptic.  For an overview of S&T policymaking, consult this Primer produced by the Congressional Research Service.

Executive Branch

In the Executive Branch, the main policy players are the Office of Science and Technology Policy (OSTP) and the Office of Management and Budget (OMB).  These offices are part of the Executive Office of the President (EOP).  The OSTP and OMB directors jointly issue an annual memo to federal agencies on science and technology priorities.  The memo on Science and Technology Priorities for the FY 2015 Budget is an interesting read for exascale computing proponents.  The word “exascale” is not mentioned.  “Computing” appears once and “Data” appears eight times.

EOP’s external advisory council on S&T matters is the President’s Council of Advisors on Science and Technology (PCAST).  PCAST is fairly transparent.  Its documents are made public and its meetings are webcast.  Its two most recent documents relevant to the current discussion, Networking and Information Technology R&D (2013) and Networking and Information Technology R&D (2010), emphasize networking and information technology – but not HPC as we know it – and certainly not exascale computing.

Legislative Branch

Just as most of us in HPC don’t have much expertise on matters of policy and law, most members of Congress don’t know much about HPC – or science and technology in general.  To compensate for this lack of expertise, Congress had an Office of Technology Assessment (OTA).  Its mission was to provide members of Congress and Congressional Committees with objective and authoritative analysis of scientific and technical issues.  OTA was eliminated in the mid-1990s.

The House Committee on Science, Space, and Technology is the venue in which many of the HPC discussions on Capitol Hill take place.  For example, here are links to archived webcasts of a couple of relevant hearings that took place earlier this year:

Next Generation Computing and Big Data Analytics

America’s Next Generation Supercomputer: The Exascale Challenge

The S&T policy process in the Legislative Branch is fraught with complexities, short on “objective and authoritative analysis”, and subject to all the partisan strategies and tactics we read about on an almost daily basis in the news.

Judicial Branch

When disagreements about S&T policy cannot be resolved by other means, they may reach the courts.  So, one might ask what objective and authoritative sources are available to them.  The answer is pretty short.  They rely on S&T writings and expert testimony.  Writings and expert opinions can be found to support just about any position.  So, the situation is similar to that in the Legislative Branch.

HPC Policy

HPC policy gets closer to the implementation levels in the federal technology agencies through the Networking and Information Technology Research and Development (NITRD) Program.  NITRD stems from the High-Performance Computing (HPC) Act of 1991 and serves as a venue for agencies to coordinate their HPC program plans and intended expenditures.  NITRD operates under the aegis of the National Science and Technology Council (NSTC).

Among its library of many informative documents, a couple of notable products put out by NITRD are its Strategic Plan and the annual “HPC Blue Book” to accompany the President’s Budget Request to Congress.

The current NITRD Strategic Plan outlines “three essential foundations for advancing leadership in the digital world”: expanded human-computer partnerships; trust and confidence in computing and networking systems; and education of a cyber-capable workforce.  Thus, there is no high-level emphasis on exascale computing or HPC as we know it.

Where the Rubber meets the Road

After all of the processes described above are said and done, the real action on HPC plays out inside the individual technology agencies.  Within the bounds of their agency’s mission and policies, program managers have at least some discretion in carrying out their jobs.  So, if they need advanced computing capabilities to accomplish their missions, they can commit resources to develop or acquire them.  However, since no agency has the mission to advance HPC technologies for their own sake, there are limits to what can be accomplished in this way.

Despite the best efforts of many intelligent and dedicated people within the federal S&T agencies, there are some frustrating limitations that are more or less inherent in the “system”.  Although the usual justifications for federally funded R&D are taking more risk and engaging in longer term research than industry can, agency reward systems may encourage their program managers to minimize risk and think in the shorter term.  The political appointees who run the agencies are only in place for short periods of time, say 4 to 8 years – and more likely the former.  Their main concern is usually creating something new.  The odds run strongly against the same topic being picked by successive appointees.  So, continuity is hard to come by.

In most S&T agencies, a great deal of attention is paid to “community” opinions and advice.  For example, most programs of any size have external advisory committees.  While such community involvement sounds like – and can be – a very positive influence, it often falls short of that goal.  In practice, “community” often means “the collection of people currently known to us”.  Without a lot of effort to keep them vital and open to new membership and ideas, external advisory committees may have fairly limited visions about the larger communities they are seen to represent.

Other external agents interested in influencing program directions include those acting in behalf of laboratory managers, vendors, and those concerned about the long-term health of local economies in places where there are significant federal expenditures.  The advice coming from such sources can be quite valuable, but may be very conservative and narrowly focused.

Most agencies have no policy for rotating personnel.  So, civil servants may stay put in positions for very long tenures. Given human limitations – we only know what and whom we know – this lack of mobility may cause even the best programs to go stale over time.

None of this should come as a surprise. But all of it begs the question: Where are the agents for risk-taking and change? These elements are critical to the timely advancement of rapidly evolving fields like HPC.

More Heat than Light

The HPC policy system appears to be broken. It is based on S&T policies that are decades old and haven’t evolved to keep up with the current state of science and technology, in general, and HPC, in particular.

Although it is widely denied, the Top500 List has filled the void and appears to have become a replacement for HPC policy. An often voiced argument for advancing HPC is that we need to be “number one” in HPC – based, of course, on the Top500 List. This is not an adequate justification for increased HPC expenditures.  There are other important areas in which the US is not number one.  Given limited resources, how shall we prioritize them for action? We need a more compelling HPC story.

Lots of people and organizations are producing lots of documents and holding hearings and other events – but not much seems to be happening.

Action Plan

The absence of a viable HPC policy, compounded with the disarray in the federal budgeting process, has led to a free-for-all.  There are lots of folks advocating lots of things – for example, to list a few of the more popular topics: Big Data; Networking; Information Technology (whatever that is); Education; Industrial Computing; Data Privacy; Open Data; and Exascale Computing.

What we need is some way to reinsert an HPC vision and policy that represent the best interests of our country.  Unfortunately, a coherent and rational HPC vision and policy are not likely to come from the usual channels.  If we accept this to be true, then we need to act outside those usual channels.

First, we need to become well informed about the HPC expenditures currently being made. We need the data and – modulo legitimate privacy considerations – all of the data. We need it now – not at some indeterminate time in the future.

The annual budget process starts with the submission of the President’s Budget request to Congress. This document provides a coherent look at the government’s current and planned HPC expenditures and describes, to a certain level of detail, how those funds are to be spent. This isn’t a perfect starting point for us – but it’s the best one available. Of course, we’ll need the corresponding information about the allocations of federal computing and networking resources.

Let’s take this information and:

  • Build it out so that it drills down to every unclassified HPC project and allocation of computing and networking resources in every relevant agency;
  • Make it openly available in a useful digital form;
  • Provide a basic set of tools to analyze it;
  • Convene a continuing, informed, public discourse; and
  • Reach our own consensus on an HPC vision and policy.

Of course it will take some resources to do this – but we need to step up and make it happen. We need to shine some daylight all the way down into federal HPC and form our own opinions about how to go forward. We may not be able to get all the information we need, but we’ll know what information needs to be broken loose. Our analyses may not be perfect, but they currently have no competition.  We may not reach consensus, but we’ll know where we disagree – and why. If we can accomplish these steps, further steps will either be obvious or unnecessary.

Let’s get engaged.  HPC and S&T policy are simply too important to leave in the hands of the “professionals”.

_____________________________________________________________________________________

Appendix: S&T Policy Players

Executive Branch

Assistant to the President for Science and Technology Policy (APST)

In the Executive Branch, the APST is the highest ranking S&T policy position. It is not a Cabinet-rank position but is close to it, in that it permits direct access to the President. Sometimes this position is filled with the OSTP Director (e.g. current Administration) – and sometimes it’s left vacant (e.g. previous administration). In the event that there is an APST, that person co-chairs the National Science and Technology Council (see below) with the President.

Office of Science and Technology Policy (OSTP)

OSTP is part of the Executive Office of the President (EOP). OSTP’s mission is to serve as a source of S&T analysis and advice for the President with respect to major policies, plans, and programs of the federal government. As mentioned above, the OSTP Director sometimes also serves as the APST.

Office of Management and Budget (OMB)

OMB, also part of the EOP, holds the Executive Branch purse strings.  So, since money fuels S&T, OMB is a very important S&T policy player.  In fact, the OSTP and OMB directors jointly issue an annual memo to federal agencies on science and technology priorities.  The memo on Science and Technology Priorities for the FY 2015 Budget is an interesting read for exascale computing proponents.  The word “exascale” is not mentioned.  “Computing” appears once and “data” appears eight times.

National Science and Technology Council (NSTC)

NSTC is the Executive Branch’s internal coordination body for science and technology issues.  It is responsible for developing and implementing the strategies to carry out the Administration’s S&T agenda.

Operating under the aegis of the NSTC is its HPC policy arm, the Networking and Information Technology Research and Development (NITRD) Program.  NITRD stems from the High-Performance Computing (HPC) Act of 1991 and serves as a venue for agencies to coordinate their HPC program plans and intended expenditures.

Among its library of many informative documents, a couple of notable products put out by NITRD are its Strategic Plan and the annual “HPC Blue Book” to accompany the President’s Budget Request to Congress.

The current NITRD Strategic Plan outlines three essential foundations for advancing leadership in the digital world:

  • WeCompute – Expanded human-computer partnerships, including more capable, available, and affordable systems; more powerful digital tools for people; and new forms of collaboration between the two
  • Trust and Confidence – The ability to design and build systems with levels of security, safety, privacy, reliability, predictability, and dependability that “you can bet your life on”
  • Cyber Capable – Transformed education and training to ensure that current generations benefit fully from cyber capabilities and to inspire a diverse, prepared, and highly productive next-generation workforce of cyber innovators.

President’s Council of Advisors on Science and Technology (PCAST)

PCAST is the external advisory council for the federal S&T enterprise.  It is fairly transparent.  Its documents are made public and its meetings are webcast.  Its two most recent documents relevant to the current discussion, Networking and Information Technology R&D (2013) and Networking and Information Technology R&D (2010), emphasize networking and information technology – but not HPC as we know it – and certainly not exascale computing.

Legislative Branch

Office of Technology Assessment (OTA)

Once upon a time, Congress had an Office of Technology Assessment.  Its mission was to provide members of Congress and Congressional Committees with objective and authoritative analysis of scientific and technical issues.  During its twenty-four-year life it produced about 750 studies on a wide range of topics.  These may be found at the OTA legacy site maintained by Princeton University.  Not feeling the need for OTA’s advice, the 104th Congress withdrew funding for OTA and it disappeared into history.  To some extent, the Government Accountability Office (GAO) has tried to fill the void created by OTA’s disappearance.

House and Senate Committees

The House Committee on Science, Space, and Technology is the venue in which many of the HPC discussions on Capitol Hill take place.  For example, here are links to archived webcasts of a couple of relevant hearings that took place earlier this year:

Next Generation Computing and Big Data Analytics

America’s Next Generation Supercomputer: The Exascale Challenge

In the Senate, a couple of committees to watch for relevant hearings are:

Senate Committee on Energy & Natural Resources

Senate Committee on Commerce, Science, & Transportation

The good news is that such hearings are public and usually webcast.  The less good news is that they are very formal affairs and not really conducive to a thorough exploration of policy alternatives.  This situation is compounded by the absence of the “objective and authoritative analysis” formerly available from OTA.

The committees mentioned above are authorizing committees.  That means that they have jurisdiction for particular topics and can write legislation authorizing the expenditure of specific amounts of federal funds for specific activities related to those topics.  However, the authorization process does not set those funds aside.  The actual expenditures are determined through a separate appropriations process, handled by different committees.  The process is complicated, so suffice it to say that, from an S&T policy perspective, the relationship between authorizing and appropriating is somewhat similar to that between OSTP and OMB in the Executive Branch.  For more about the budget process, take a look here.

So, the S&T policy process in the Legislative Branch is fraught with complexities, short on “objective and authoritative analysis”, and subject to all the partisan strategies and tactics we read about on an almost daily basis in the news.

Judicial Branch

When disagreements about S&T policy cannot be resolved by other means, they may reach the courts.  So, one might ask what objective and authoritative sources are available to them.  The answer is pretty short.  They rely on S&T writings and expert testimony.  Since writings and experts can be found to support either side of most issues, judicial resolution of S&T issues does not inspire optimism.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Scalable Informatics Ceases Operations

March 23, 2017

On the same day we reported on the uncertain future for HPC compiler company PathScale, we are sad to learn that another HPC vendor, Scalable Informatics, is closing its doors. Read more…

By Tiffany Trader

‘Strategies in Biomedical Data Science’ Advances IT-Research Synergies

March 23, 2017

“Strategies in Biomedical Data Science: Driving Force for Innovation” by Jay A. Etchings is both an introductory text and a field guide for anyone working with biomedical data. Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Google Launches New Machine Learning Journal

March 22, 2017

On Monday, Google announced plans to launch a new peer review journal and “ecosystem” Read more…

By John Russell

HPE Extreme Performance Solutions

HFT Firms Turn to Co-Location to Gain Competitive Advantage

High-frequency trading (HFT) is a high-speed, high-stakes world where every millisecond matters. Finding ways to execute trades faster than the competition translates directly to greater revenue for firms, brokerages, and exchanges. Read more…

Swiss Researchers Peer Inside Chips with Improved X-Ray Imaging

March 22, 2017

Peering inside semiconductor chips using x-ray imaging isn’t new, but the technique hasn’t been especially good or easy to accomplish. Read more…

By John Russell

LANL Simulation Shows Massive Black Holes Break ‘Speed Limit’

March 21, 2017

A new computer simulation based on codes developed at Los Alamos National Laboratory (LANL) is shedding light on how supermassive black holes could have formed in the early universe contrary to most prior models which impose a limit on how fast these massive ‘objects’ can form. Read more…

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Intel Ships Drives Based on 3D XPoint Non-volatile Memory

March 20, 2017

Intel Corp. has begun shipping new storage drives based on its 3D XPoint non-volatile memory technology as it targets data-driven workloads. Intel’s new Optane solid-state drives, designated P4800X, seek to combine the attributes of memory and storage in the same device. Read more…

By George Leopold

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

Nvidia Debuts HGX-1 for Cloud; Announces Fujitsu AI Deal

March 9, 2017

On Monday Nvidia announced a major deal with Fujitsu to help build an AI supercomputer for RIKEN using 24 DGX-1 servers. Read more…

By John Russell

HPC4Mfg Advances State-of-the-Art for American Manufacturing

March 9, 2017

Last Friday (March 3, 2017), the High Performance Computing for Manufacturing (HPC4Mfg) program held an industry engagement day workshop in San Diego, bringing together members of the US manufacturing community, national laboratories and universities to discuss the role of high-performance computing as an innovation engine for American manufacturing. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Leading Solution Providers

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This