HPC and Science & Technology Policy

By Gary M. Johnson

November 26, 2013

Policies, like sausages, cease to inspire respect in proportion as we know how they are made. This is a loose paraphrase of a common analogy. Is it apt when applied to science and technology policy? In particular, how – and where – is HPC policy made? Is it currently being made at all?

Given the number of HPC issues currently on the table and in competition for scarce federal resources, perhaps we should set aside any lack of respect for the process and get engaged in the sausage making. We need clear federal policy guidance to allocate resources and mobilize the technology agencies to advance HPC and its applications. Some suggestions for HPC community action to improve this situation are included.

Moments in S&T Policy

To put the current S&T policy situation in context and to help frame issues, consider this (very) short list of notable S&T policy moments. Note that they are all linked to global conflicts.

National Advisory Committee for Aeronautics (NACA) – 3 March 1915

NACA, the progenitor of NASA, was created during World War I as a reaction to the advances being made in Europe in the new field of aeronautics. It was feared that the US would lose its early lead in aeronautics and that this would have not only military but economic consequences. Consequently, the US created a federally funded organization whose core mission embraced cooperation with industry. This event, unique in our history, is reported to have “slipped through” the legislative process “almost unnoticed as a rider attached to the Naval Appropriation Bill, on 3 March 1915”.  As they say, the rest is history.  NACA/NASA, working in cooperation with the US aeronautics industry, yielded fantastic results.

Science: The Endless Frontier – 25 July 1945

World War II saw the next surge in science and technology. Adding to the laboratories operated by NACA, many further elements of our current federal R&D infrastructure were put in place. At the end of the war, Vannevar Bush, who headed the Office of Scientific Research and Development (OSRD) – which coordinated almost all wartime military R&D, including initiation and early administration of the Manhattan Project – produced the seminal S&T policy document entitled Science: The Endless Frontier. It contained a very interesting “program for action”.  Here are a few excerpts (emphasis ours):

The Government should accept new responsibilities for promoting the flow of new scientific knowledge and the development of scientific talent in our youth. These responsibilities are the proper concern of the Government, for they vitally affect our health, our jobs, and our national security.  …

The effective discharge of these new responsibilities will require the full attention of some over-all agency devoted to that purpose.  

On the wisdom with which we bring science to bear in the war against disease, in the creation of new industries, and in the strengthening of our Armed Forces depends in large measure our future as a nation.

Bush, who was in effect the country’s first presidential science advisor, didn’t get everything he asked for.   No “over-all agency” was created, but the case he made did lead to the creation of the National Science Foundation and Science: The Endless Frontier has constituted the S&T policy basis for all subsequent developments.

In the wrangling that followed Bush’s recommendations, we got a civilian agency focused on supporting university-based research and, to a lesser extent, education.  The military proceeded independently to enlarge its research complex.  Any expansion to other agencies of the NACA-style collaboration with civilian industry fell through the cracks.

Sputnik – 4 October 1957

Our final S&T policy moment is drawn from the Cold War period.  When the Soviet Union launched the first artificial Earth satellite, Sputnik, the event sent shock waves through the US public.  Government actions, spurred on by public reaction to the Sputnik crisis, led to:

So, thanks to the Cold War and Sputnik, we got: a big boost to S&T related education; an expansion of military R&D; and the extension of NACA-style collaboration with industry into the new NASA and for peaceful uses of space.

Beyond NASA, civilian technology agencies, in large measure, still lacked any core mission elements authorizing – and thus protecting – direct collaborations with industry.  This ends our story and is basically the end of significant S&T policy developments in the US.

Today, we have a national S&T policy that hasn’t changed much since the early days of the Cold War.  Perhaps its biggest shortcoming is that, beyond NASA, it doesn’t really empower strong collaborations between federal S&T agencies and American industries.  Inside the Capital Beltway, mission trumps all other considerations.  If S&T agencies engage in activities without direct and obvious linkages to their core missions, they may endanger their budget appropriations.

No agency has the mission to advance HPC.  Several agencies engage in HPC R&D to advance other mission elements, but no agency has advancing HPC itself (like NASA advances aeronautics and space technologies) as a core mission element.

S&T Policy Players

S&T policy is a game that anyone can play – and many do.  Thus, there is no shortage of literature on this topic and there are lots of players, both inside and outside the federal government.  So that your eyes don’t glaze over, we’ll limit the discussion here to mentioning just a few of the main federal players.  We’ve included a short appendix at the end of this article containing some additional information about the players.  Please consult it to make this section less cryptic.  For an overview of S&T policymaking, consult this Primer produced by the Congressional Research Service.

Executive Branch

In the Executive Branch, the main policy players are the Office of Science and Technology Policy (OSTP) and the Office of Management and Budget (OMB).  These offices are part of the Executive Office of the President (EOP).  The OSTP and OMB directors jointly issue an annual memo to federal agencies on science and technology priorities.  The memo on Science and Technology Priorities for the FY 2015 Budget is an interesting read for exascale computing proponents.  The word “exascale” is not mentioned.  “Computing” appears once and “Data” appears eight times.

EOP’s external advisory council on S&T matters is the President’s Council of Advisors on Science and Technology (PCAST).  PCAST is fairly transparent.  Its documents are made public and its meetings are webcast.  Its two most recent documents relevant to the current discussion, Networking and Information Technology R&D (2013) and Networking and Information Technology R&D (2010), emphasize networking and information technology – but not HPC as we know it – and certainly not exascale computing.

Legislative Branch

Just as most of us in HPC don’t have much expertise on matters of policy and law, most members of Congress don’t know much about HPC – or science and technology in general.  To compensate for this lack of expertise, Congress had an Office of Technology Assessment (OTA).  Its mission was to provide members of Congress and Congressional Committees with objective and authoritative analysis of scientific and technical issues.  OTA was eliminated in the mid-1990s.

The House Committee on Science, Space, and Technology is the venue in which many of the HPC discussions on Capitol Hill take place.  For example, here are links to archived webcasts of a couple of relevant hearings that took place earlier this year:

Next Generation Computing and Big Data Analytics

America’s Next Generation Supercomputer: The Exascale Challenge

The S&T policy process in the Legislative Branch is fraught with complexities, short on “objective and authoritative analysis”, and subject to all the partisan strategies and tactics we read about on an almost daily basis in the news.

Judicial Branch

When disagreements about S&T policy cannot be resolved by other means, they may reach the courts.  So, one might ask what objective and authoritative sources are available to them.  The answer is pretty short.  They rely on S&T writings and expert testimony.  Writings and expert opinions can be found to support just about any position.  So, the situation is similar to that in the Legislative Branch.

HPC Policy

HPC policy gets closer to the implementation levels in the federal technology agencies through the Networking and Information Technology Research and Development (NITRD) Program.  NITRD stems from the High-Performance Computing (HPC) Act of 1991 and serves as a venue for agencies to coordinate their HPC program plans and intended expenditures.  NITRD operates under the aegis of the National Science and Technology Council (NSTC).

Among its library of many informative documents, a couple of notable products put out by NITRD are its Strategic Plan and the annual “HPC Blue Book” to accompany the President’s Budget Request to Congress.

The current NITRD Strategic Plan outlines “three essential foundations for advancing leadership in the digital world”: expanded human-computer partnerships; trust and confidence in computing and networking systems; and education of a cyber-capable workforce.  Thus, there is no high-level emphasis on exascale computing or HPC as we know it.

Where the Rubber meets the Road

After all of the processes described above are said and done, the real action on HPC plays out inside the individual technology agencies.  Within the bounds of their agency’s mission and policies, program managers have at least some discretion in carrying out their jobs.  So, if they need advanced computing capabilities to accomplish their missions, they can commit resources to develop or acquire them.  However, since no agency has the mission to advance HPC technologies for their own sake, there are limits to what can be accomplished in this way.

Despite the best efforts of many intelligent and dedicated people within the federal S&T agencies, there are some frustrating limitations that are more or less inherent in the “system”.  Although the usual justifications for federally funded R&D are taking more risk and engaging in longer term research than industry can, agency reward systems may encourage their program managers to minimize risk and think in the shorter term.  The political appointees who run the agencies are only in place for short periods of time, say 4 to 8 years – and more likely the former.  Their main concern is usually creating something new.  The odds run strongly against the same topic being picked by successive appointees.  So, continuity is hard to come by.

In most S&T agencies, a great deal of attention is paid to “community” opinions and advice.  For example, most programs of any size have external advisory committees.  While such community involvement sounds like – and can be – a very positive influence, it often falls short of that goal.  In practice, “community” often means “the collection of people currently known to us”.  Without a lot of effort to keep them vital and open to new membership and ideas, external advisory committees may have fairly limited visions about the larger communities they are seen to represent.

Other external agents interested in influencing program directions include those acting in behalf of laboratory managers, vendors, and those concerned about the long-term health of local economies in places where there are significant federal expenditures.  The advice coming from such sources can be quite valuable, but may be very conservative and narrowly focused.

Most agencies have no policy for rotating personnel.  So, civil servants may stay put in positions for very long tenures. Given human limitations – we only know what and whom we know – this lack of mobility may cause even the best programs to go stale over time.

None of this should come as a surprise. But all of it begs the question: Where are the agents for risk-taking and change? These elements are critical to the timely advancement of rapidly evolving fields like HPC.

More Heat than Light

The HPC policy system appears to be broken. It is based on S&T policies that are decades old and haven’t evolved to keep up with the current state of science and technology, in general, and HPC, in particular.

Although it is widely denied, the Top500 List has filled the void and appears to have become a replacement for HPC policy. An often voiced argument for advancing HPC is that we need to be “number one” in HPC – based, of course, on the Top500 List. This is not an adequate justification for increased HPC expenditures.  There are other important areas in which the US is not number one.  Given limited resources, how shall we prioritize them for action? We need a more compelling HPC story.

Lots of people and organizations are producing lots of documents and holding hearings and other events – but not much seems to be happening.

Action Plan

The absence of a viable HPC policy, compounded with the disarray in the federal budgeting process, has led to a free-for-all.  There are lots of folks advocating lots of things – for example, to list a few of the more popular topics: Big Data; Networking; Information Technology (whatever that is); Education; Industrial Computing; Data Privacy; Open Data; and Exascale Computing.

What we need is some way to reinsert an HPC vision and policy that represent the best interests of our country.  Unfortunately, a coherent and rational HPC vision and policy are not likely to come from the usual channels.  If we accept this to be true, then we need to act outside those usual channels.

First, we need to become well informed about the HPC expenditures currently being made. We need the data and – modulo legitimate privacy considerations – all of the data. We need it now – not at some indeterminate time in the future.

The annual budget process starts with the submission of the President’s Budget request to Congress. This document provides a coherent look at the government’s current and planned HPC expenditures and describes, to a certain level of detail, how those funds are to be spent. This isn’t a perfect starting point for us – but it’s the best one available. Of course, we’ll need the corresponding information about the allocations of federal computing and networking resources.

Let’s take this information and:

  • Build it out so that it drills down to every unclassified HPC project and allocation of computing and networking resources in every relevant agency;
  • Make it openly available in a useful digital form;
  • Provide a basic set of tools to analyze it;
  • Convene a continuing, informed, public discourse; and
  • Reach our own consensus on an HPC vision and policy.

Of course it will take some resources to do this – but we need to step up and make it happen. We need to shine some daylight all the way down into federal HPC and form our own opinions about how to go forward. We may not be able to get all the information we need, but we’ll know what information needs to be broken loose. Our analyses may not be perfect, but they currently have no competition.  We may not reach consensus, but we’ll know where we disagree – and why. If we can accomplish these steps, further steps will either be obvious or unnecessary.

Let’s get engaged.  HPC and S&T policy are simply too important to leave in the hands of the “professionals”.

_____________________________________________________________________________________

Appendix: S&T Policy Players

Executive Branch

Assistant to the President for Science and Technology Policy (APST)

In the Executive Branch, the APST is the highest ranking S&T policy position. It is not a Cabinet-rank position but is close to it, in that it permits direct access to the President. Sometimes this position is filled with the OSTP Director (e.g. current Administration) – and sometimes it’s left vacant (e.g. previous administration). In the event that there is an APST, that person co-chairs the National Science and Technology Council (see below) with the President.

Office of Science and Technology Policy (OSTP)

OSTP is part of the Executive Office of the President (EOP). OSTP’s mission is to serve as a source of S&T analysis and advice for the President with respect to major policies, plans, and programs of the federal government. As mentioned above, the OSTP Director sometimes also serves as the APST.

Office of Management and Budget (OMB)

OMB, also part of the EOP, holds the Executive Branch purse strings.  So, since money fuels S&T, OMB is a very important S&T policy player.  In fact, the OSTP and OMB directors jointly issue an annual memo to federal agencies on science and technology priorities.  The memo on Science and Technology Priorities for the FY 2015 Budget is an interesting read for exascale computing proponents.  The word “exascale” is not mentioned.  “Computing” appears once and “data” appears eight times.

National Science and Technology Council (NSTC)

NSTC is the Executive Branch’s internal coordination body for science and technology issues.  It is responsible for developing and implementing the strategies to carry out the Administration’s S&T agenda.

Operating under the aegis of the NSTC is its HPC policy arm, the Networking and Information Technology Research and Development (NITRD) Program.  NITRD stems from the High-Performance Computing (HPC) Act of 1991 and serves as a venue for agencies to coordinate their HPC program plans and intended expenditures.

Among its library of many informative documents, a couple of notable products put out by NITRD are its Strategic Plan and the annual “HPC Blue Book” to accompany the President’s Budget Request to Congress.

The current NITRD Strategic Plan outlines three essential foundations for advancing leadership in the digital world:

  • WeCompute – Expanded human-computer partnerships, including more capable, available, and affordable systems; more powerful digital tools for people; and new forms of collaboration between the two
  • Trust and Confidence – The ability to design and build systems with levels of security, safety, privacy, reliability, predictability, and dependability that “you can bet your life on”
  • Cyber Capable – Transformed education and training to ensure that current generations benefit fully from cyber capabilities and to inspire a diverse, prepared, and highly productive next-generation workforce of cyber innovators.

President’s Council of Advisors on Science and Technology (PCAST)

PCAST is the external advisory council for the federal S&T enterprise.  It is fairly transparent.  Its documents are made public and its meetings are webcast.  Its two most recent documents relevant to the current discussion, Networking and Information Technology R&D (2013) and Networking and Information Technology R&D (2010), emphasize networking and information technology – but not HPC as we know it – and certainly not exascale computing.

Legislative Branch

Office of Technology Assessment (OTA)

Once upon a time, Congress had an Office of Technology Assessment.  Its mission was to provide members of Congress and Congressional Committees with objective and authoritative analysis of scientific and technical issues.  During its twenty-four-year life it produced about 750 studies on a wide range of topics.  These may be found at the OTA legacy site maintained by Princeton University.  Not feeling the need for OTA’s advice, the 104th Congress withdrew funding for OTA and it disappeared into history.  To some extent, the Government Accountability Office (GAO) has tried to fill the void created by OTA’s disappearance.

House and Senate Committees

The House Committee on Science, Space, and Technology is the venue in which many of the HPC discussions on Capitol Hill take place.  For example, here are links to archived webcasts of a couple of relevant hearings that took place earlier this year:

Next Generation Computing and Big Data Analytics

America’s Next Generation Supercomputer: The Exascale Challenge

In the Senate, a couple of committees to watch for relevant hearings are:

Senate Committee on Energy & Natural Resources

Senate Committee on Commerce, Science, & Transportation

The good news is that such hearings are public and usually webcast.  The less good news is that they are very formal affairs and not really conducive to a thorough exploration of policy alternatives.  This situation is compounded by the absence of the “objective and authoritative analysis” formerly available from OTA.

The committees mentioned above are authorizing committees.  That means that they have jurisdiction for particular topics and can write legislation authorizing the expenditure of specific amounts of federal funds for specific activities related to those topics.  However, the authorization process does not set those funds aside.  The actual expenditures are determined through a separate appropriations process, handled by different committees.  The process is complicated, so suffice it to say that, from an S&T policy perspective, the relationship between authorizing and appropriating is somewhat similar to that between OSTP and OMB in the Executive Branch.  For more about the budget process, take a look here.

So, the S&T policy process in the Legislative Branch is fraught with complexities, short on “objective and authoritative analysis”, and subject to all the partisan strategies and tactics we read about on an almost daily basis in the news.

Judicial Branch

When disagreements about S&T policy cannot be resolved by other means, they may reach the courts.  So, one might ask what objective and authoritative sources are available to them.  The answer is pretty short.  They rely on S&T writings and expert testimony.  Since writings and experts can be found to support either side of most issues, judicial resolution of S&T issues does not inspire optimism.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Embraces FPGAs, ‘Elastic’ GPUs

December 2, 2016

A new instance type rolled out this week by Amazon Web Services is based on customizable field programmable gate arrays that promise to strike a balance between performance and cost as emerging workloads create requirements often unmet by general-purpose processors. Read more…

By George Leopold

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 1, 2016)

December 1, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPC Career Notes (Dec. 2016)

December 1, 2016

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high performance computing community. Read more…

By Thomas Ayres

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

IBM and NSF Computing Pioneer Erich Bloch Dies at 91

November 30, 2016

Erich Bloch, a computational pioneer whose competitive zeal and commercial bent helped transform the National Science Foundation while he was its director, died last Friday at age 91. Bloch was a productive force to be reckoned. During his long stint at IBM prior to joining NSF Bloch spearheaded development of the “Stretch” supercomputer and IBM’s phenomenally successful System/360. Read more…

By John Russell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Intel Details AI Hardware Strategy for Post-GPU Age

November 21, 2016

Last week at SC16, Intel revealed its product roadmap for embedding its processors with key capabilities and attributes needed to take artificial intelligence (AI) to the next level. Read more…

By Alex Woodie

SC Says Farewell to Salt Lake City, See You in Denver

November 18, 2016

After an intense four-day flurry of activity (and a cold snap that brought some actual snow flurries), the SC16 show floor closed yesterday (Thursday) and the always-extensive technical program wound down today. Read more…

By Tiffany Trader

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Leading Solution Providers

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This