RSC Packs a Petaflops of Xeon Phi in a Rack

By Timothy Prickett Morgan

November 27, 2013

RSC Group, a four-year-old maker of clusters based in Moscow that has created some of the most energy efficient machines installed in Russia, got plenty of attention last week at SC13 with its new PetaStream system.

Like many top-end systems created today, the PetaStream is a hybrid design, and in this case it mixes a modest number of Xeon processors from Intel with a much larger number of Xeon Phi X86 coprocessors to get more than 1 petaflops of aggregate double-precision number-crunching power into a single rack.

The PetaStream system cheats a little bit on the server density by using a non-standard rack that is a meter wide (3.28 feet). A standard server rack is 19 inches on the inside and usually around 24 inches (two feet) on the outside. That said, the PetaStream system still points the way to the kind of dense packaging of compute capacity that will be necessary to approach exascale compute capacities in the next decade.

The PetaStream system has an Intel Xeon E5-2690 v2 processor as the basis of each node in the machine. This is the new ten-core “Ivy Bridge-EP” processor, which was announced by Intel in September and which clocks at 3 GHz. RSC is using Intel’s S1600JP motherboard, which was designed for single-socket, half-wide server nodes but which can accept the E5-2690 v2 chip, which was made for two-socket machines. Each one of the Xeon E5 processors has eight Xeon Phi coprocessors hanging off its PCI-Express bus. The system has an embedded version of the Xeon Phi that has 60 cores and 240 threads on each “Knights Corner” chip, which delivers over 1 teraflops of peak performance on double-precision calculations. This Xeon Phi card has 8 GB of GDDR5 memory and runs a skinny Linux operating system for workloads that are offloaded from the CPU.

Customers can use Intel True Scale or Mellanox Connect-IB adapter cards on the server nodes to link out to InfiniBand or Ethernet interconnects. With the two PCI-Express 3.0 x16 slots, RSC suggests that four InfiniBand ports running at 40 Gb/sec (QDR) or 56 Gb/sec (FDR) coming out of the module is a reasonable configuration where high bandwidth and low latency are important.

The Xeon and Xeon Phi components are packaged up in a compute module that has direct liquid cooling on all of the hot components in the module. Either water or glycol can be used as the coolant for the machine, according to Alexander Moskovsky, CEO at RSC Group. The liquid cooling system is designed to allow as much as 400 kilowatts of electricity to be consumed by the rack’s components and then pulled off as heat.

rsc-petastream-architecture

The PetaStream modules have room for five solid state drives for local storage on the cluster, and RSC has chosen Intel’s DC S3700 or DC S3500 series drives for the PetaStream machine, which have 800 GB of capacity. With all 640 SSDs in the rack, that gives 512 TB of storage.

The PetaStream system rack slides compute modules in both the back and the front of the rack, for a total of 128 modules. That yields 1,024 Xeon Phi coprocessors for a total of 61,440 cores and 245,760 threads, all crammed into a rack that is 7.2 feet tall and measures 3.28 feet on a side.

“Our calculations show that one rack of RSC PetaStream is close to eight racks of X86 servers,” Alexey Shmelev, chief operations officer and co-founder of RSC, explained at the launch of the machine at SC13 last week. “This is not the measurement of peak theoretical performance, but the measurement on real applications.” And, he added, the PetaStream system required half of the energy as the X86 machine to solve the same problem.

Because the machine can be configured in a number of different ways, RSC was reluctant to provide a base price for the PetaStream rack. But Moskovsky said that the Xeon Phi cards were a big part of the system cost, which stands to reason given that there are 1,024 of them in the rack. When pressed about how the PetaStream machine would compare to a plain vanilla cluster of X86 servers, Moskovsky said that that the “flops per dollar would be price competitive” and left it at that.

The idea that is espoused again and again in cluster designs with compute offload, liquid cooling, or both is that the benefits of these technologies pay for themselves in savings in space, power, and cooling. That is true so long as a customer has the kind of software that can be tweaked to offload routines to the Xeon Phi coprocessor – and the time to make such changes to their code.

The PetaStream machine will be even more interesting when Intel ships its next generation “Knights Landing” Xeon Phi chip, which Intel talked a bit more about at SC13 last week. This Xeon Phi chip will have its own local memory on the die as well as DDR4 memory on the package; it will also plug into its own socket on a system board and will be available as a standalone compute module that no longer needs a Xeon processor telling it what to do over the PCI bus.

The roadmaps that we have seen show the Knights Landing chip delivering around 3 teraflops of double-precision math and coming to market in 2015 or so. In theory, a PetaStream rack could triple up to 3 petaflops in its rack without too much effort. It looks like the Knights Landing chip will have about the same thermal envelope as the current Knights Corner Xeon Phi chips, so putting a larger number of Xeon Phi chips into a PetaStream rack is probably not going to be easy even if it is possible. Then again, that is what engineering is all about, and RSC has time to figure out how to cram even more compute into a rack.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

HPE Extreme Performance Solutions

Object Storage is the Ideal Storage Method for CME Companies

The communications, media, and entertainment (CME) sector is experiencing a massive paradigm shift driven by rising data volumes and the demand for high-performance data analytics. Read more…

Weekly Twitter Roundup (Feb. 16, 2017)

February 16, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Alexander Named Dep. Dir. of Brookhaven Computational Initiative

February 15, 2017

Francis Alexander, a physicist with extensive management and leadership experience in computational science research, has been named Deputy Director of the Computational Science Initiative at the U.S. Read more…

Here’s What a Neural Net Looks Like On the Inside

February 15, 2017

Ever wonder what the inside of a machine learning model looks like? Today Graphcore released fascinating images that show how the computational graph concept maps to a new graph processor and graph programming framework it’s creating. Read more…

By Alex Woodie

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

HPC Cloud Startup Launches ‘App Store’ for HPC Workflows

February 9, 2017

“Civilization advances by extending the number of important operations which we can perform without thinking about them,” Read more…

By Tiffany Trader

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This