HPC Progress Starting from 10X

By Bill Sembrat

December 4, 2013

I was fortunate to have worked very closely with Seymour Cray for many years in many different roles and capacities. I started working with Seymour and Seymour’s machines at Control Data Corp. I was the Account Manager at Lawrence Livermore National Lab when Sid Fernbach was the “leader” and then the Account Manager at DOE. Although I took it for granted at the time, I was in “graduate school” between the world’s leading designer and the world’s leading user. I sometimes think about that very special set of circumstances and didn’t realize how very special it was taking it all for granted and thinking that it was the way all high tech companies and users worked. Before Seymour died I also worked with him at Cray Computer Corp and then at SRC Computers. I left SRC Computers after Seymour died.

Now, reflecting on the past and looking towards the future let’s think about performance increases and how to get some significant performance increases. A reasonable starting goal is to look for performance increase of 10X with a pathway to get, at least, another 10X.

Consider the problems and issues. It’s hard to add more racks and because of power, heat and other considerations, we have to look at other areas. It would be nice if we can just go to the most fundamental part and get transistors to switch 10X faster. Faster electron transmission would be nice too. It would be easy if we could reach in and turn the dials up ignoring, for the moment, heat dissipation and transmission delays. This is why there is tremendous effort being spent on speeding up transistors. Well, let’s consider changing to gallium arsenide transistors. Seymour changed from silicon to gallium arsenide for speed and some other characteristics including reduced power requirements and a few others, but even then with gallium arsenide we will still face limits. A lot of labs around the world are working on faster transistors including a silicon-germanium composite, so there is some hope for faster devices. As I understand, these improvements are around 2X-4X or so, but even 2X would be great. Well, we are reaching limits (and can’t just get around some physical limitations) so this approach is not going to get us very far down the road, and herein lies the most significant issue.

In search of speed in the late 1950’s Seymour changed from germanium transistors to new transistors from a new start up company in California, Fairchild Semiconductor, “Planar Silicon Transistors”. Of course, that was before the label of “Silicon Valley” existed. Seymour may have been the first, if not one of the first to use silicon transistors for HPC, also well before the label of “HPC”. This was for the Control Data Corp 6600. The 6600 was a revolutionary machine that also greatly expanded the existing computer model addressing real code and real workload issues. If you take a “Big Picture” look at the 6600 you would see that it exploited the “RAM” model foretelling the future. We have all been on a pathway set by a model, which was already, somewhat, fully exploited with the 6600. The model hasn’t really changed and really all we have been doing over the last several decades is riding the coattails of technology improvements, tweaking the model, improving it here and there, and adding parallelism. In search of faster serial speed for the Cray 3 and Cray 4 Seymour was again to change, this time, from silicon to gallium arsenide transistors.

We cannot expect technology to get us large improvements, therefore, we have to address fundamental model changes on how we process codes and work loads. The guys in the farmhouse in Princeton thought they were in “fat city” when they came up with the idea of using CRTs as random access memory (RAM). As I remember each CRT was 40 words by 40 bits. They had a few CRTs, which was, at the time, all of the random access memory that existed on the planet. They were losing bits until they discovered that sunlight coming in the windows hit the CRTs resulting in dropping bits. They had to cover up all the windows. I would like to know what they were thinking and considering as options besides RAM and CRTs, but did not use and why. They were free thinkers and unencumbered by RAM or even users at the time. Over the last 50 years many root models changes were considered so it is important to understand the history, circumstances and compromises made at the time.

Even if you can come up with a plan to get to a 10X improvement (and if we just assume that we can) you arrive with a lot of problems to be overcome. Here we run in into that issue that seems to always come up with any speed improvement, memory, but you also come face-to-face with just moving stuff around and the limitations of even using wire. And one always needs to keep in mind power and transmission issues. We find several technology brick walls coming at us at one time. So, this technology driven path does not seem to be easy, quick or may not be cost effective. That said we would still welcome (and use!) any technology improvements.

Since improvements in technology will only get us so far, I am suggesting, just as Seymour was driven, to look at root level model changes; this may be the only way to see large improvements of 10X, and a path to another 10X or more. Seymour was always pushing speed and many may be surprised to know that follow on machines to the Cray 4 were quite different but also technology driven as usual. They follow further attempts to include additional parallelism in an electrical structure without abandoning the serial structure of computer programs and adding in features that became possible because of advances in technology. Seymour was a “free thinker” always considering and thinking about root model changes that would become necessary. Root level model changes are more easily considered and understood if you consider both the details and big picture coupled with broad based historical knowledge.

If we can start with a blank sheet, it is always good to keep in mind that there is a great need to reduce power and the easy way is to just make everything simpler and eliminate or reduce parts. It’s time to also go back to the very source and reconsider just how users are using machines and what they are trying to accomplish. In other words go back to look not only how real codes load the machine, but how and what they are trying to accomplish. Then we need to go back address different new and faster models. I really don’t think we in the computer business have been good vendors to our users. We have been forcing users to become computer experts just to use our machines. Users are just using a “tool” to get there work done and really don’t care about all this “technology” that we force them to understand in order to use computers. And the complexities are only increasing, with various types of parallelism, cache levels, threads, threadblocks, etc. Seymour always looked at applying his “gift” to give other people a better, faster, simpler, easier to use “tool” to better understand the world around us.

Seymour would sometimes get tired of my continued questions about what else he was thinking about and why he didn’t use it or go in a different direction. Given the right circumstances, Seymour was disarmingly straightforward. At the right time Seymour even welcomed a discussion because, I think, it gave him a way to talk about what he was thinking; it was part of his discovery process when he came to difficult questions or a roadblock. I found I learned much more from what was thrown out and the process to the answer, especially when most answers seemed quite simple – it’s the “Why didn’t I think of that?” moment. The real question becomes not the answer, but rather, if it’s so simple, why didn’t I think of that? You may quickly find that it was really not that simple or you were not asking the right question. Understanding the answer, going to the root and also understanding the history is always much better and far richer if you can and are able to understand all the “whys.” Sometimes, we are all too ready to just look for the “answer.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

The EU Human Brain Project Reboots but Supercomputing Still Needed

June 26, 2017

The often contentious, EU-funded Human Brain Project whose initial aim was fixed firmly on full-brain simulation is now in the midst of a reboot targeting a more modest goal – development of informatics tools and data/ Read more…

By John Russell

DOE Launches Chicago Quantum Exchange

June 26, 2017

While many of us were preoccupied with ISC 2017 last week, the launch of the Chicago Quantum Exchange went largely unnoticed. So what is such a thing? It is a Department of Energy sponsored collaboration between the Univ Read more…

By John Russell

UMass Dartmouth Reports on HPC Day 2017 Activities

June 26, 2017

UMass Dartmouth's Center for Scientific Computing & Visualization Research (CSCVR) organized and hosted the third annual "HPC Day 2017" on May 25th. This annual event showcases on-going scientific research in Massach Read more…

By Gaurav Khanna

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascale” award), parsed out additional information ab Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Creating a Roadmap for HPC Innovation at ISC 2017

In an era where technological advancements are driving innovation to every sector, and powering major economic and scientific breakthroughs, high performance computing (HPC) is crucial to tackle the challenges of today and tomorrow. Read more…

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid whoops and hollers from the crowd, Thomas Sterling presented t Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out plans to push deeper into climate science and develop more gran Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale companies and their embrace of AI and deep learning – tha Read more…

By Doug Black

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network designed to emulate and compete with the human brain. In thi Read more…

By Doug Black

DOE Launches Chicago Quantum Exchange

June 26, 2017

While many of us were preoccupied with ISC 2017 last week, the launch of the Chicago Quantum Exchange went largely unnoticed. So what is such a thing? It is a D Read more…

By John Russell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid wh Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out pla Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale Read more…

By Doug Black

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big d Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “g Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This