HPC Progress Starting from 10X

By Bill Sembrat

December 4, 2013

I was fortunate to have worked very closely with Seymour Cray for many years in many different roles and capacities. I started working with Seymour and Seymour’s machines at Control Data Corp. I was the Account Manager at Lawrence Livermore National Lab when Sid Fernbach was the “leader” and then the Account Manager at DOE. Although I took it for granted at the time, I was in “graduate school” between the world’s leading designer and the world’s leading user. I sometimes think about that very special set of circumstances and didn’t realize how very special it was taking it all for granted and thinking that it was the way all high tech companies and users worked. Before Seymour died I also worked with him at Cray Computer Corp and then at SRC Computers. I left SRC Computers after Seymour died.

Now, reflecting on the past and looking towards the future let’s think about performance increases and how to get some significant performance increases. A reasonable starting goal is to look for performance increase of 10X with a pathway to get, at least, another 10X.

Consider the problems and issues. It’s hard to add more racks and because of power, heat and other considerations, we have to look at other areas. It would be nice if we can just go to the most fundamental part and get transistors to switch 10X faster. Faster electron transmission would be nice too. It would be easy if we could reach in and turn the dials up ignoring, for the moment, heat dissipation and transmission delays. This is why there is tremendous effort being spent on speeding up transistors. Well, let’s consider changing to gallium arsenide transistors. Seymour changed from silicon to gallium arsenide for speed and some other characteristics including reduced power requirements and a few others, but even then with gallium arsenide we will still face limits. A lot of labs around the world are working on faster transistors including a silicon-germanium composite, so there is some hope for faster devices. As I understand, these improvements are around 2X-4X or so, but even 2X would be great. Well, we are reaching limits (and can’t just get around some physical limitations) so this approach is not going to get us very far down the road, and herein lies the most significant issue.

In search of speed in the late 1950’s Seymour changed from germanium transistors to new transistors from a new start up company in California, Fairchild Semiconductor, “Planar Silicon Transistors”. Of course, that was before the label of “Silicon Valley” existed. Seymour may have been the first, if not one of the first to use silicon transistors for HPC, also well before the label of “HPC”. This was for the Control Data Corp 6600. The 6600 was a revolutionary machine that also greatly expanded the existing computer model addressing real code and real workload issues. If you take a “Big Picture” look at the 6600 you would see that it exploited the “RAM” model foretelling the future. We have all been on a pathway set by a model, which was already, somewhat, fully exploited with the 6600. The model hasn’t really changed and really all we have been doing over the last several decades is riding the coattails of technology improvements, tweaking the model, improving it here and there, and adding parallelism. In search of faster serial speed for the Cray 3 and Cray 4 Seymour was again to change, this time, from silicon to gallium arsenide transistors.

We cannot expect technology to get us large improvements, therefore, we have to address fundamental model changes on how we process codes and work loads. The guys in the farmhouse in Princeton thought they were in “fat city” when they came up with the idea of using CRTs as random access memory (RAM). As I remember each CRT was 40 words by 40 bits. They had a few CRTs, which was, at the time, all of the random access memory that existed on the planet. They were losing bits until they discovered that sunlight coming in the windows hit the CRTs resulting in dropping bits. They had to cover up all the windows. I would like to know what they were thinking and considering as options besides RAM and CRTs, but did not use and why. They were free thinkers and unencumbered by RAM or even users at the time. Over the last 50 years many root models changes were considered so it is important to understand the history, circumstances and compromises made at the time.

Even if you can come up with a plan to get to a 10X improvement (and if we just assume that we can) you arrive with a lot of problems to be overcome. Here we run in into that issue that seems to always come up with any speed improvement, memory, but you also come face-to-face with just moving stuff around and the limitations of even using wire. And one always needs to keep in mind power and transmission issues. We find several technology brick walls coming at us at one time. So, this technology driven path does not seem to be easy, quick or may not be cost effective. That said we would still welcome (and use!) any technology improvements.

Since improvements in technology will only get us so far, I am suggesting, just as Seymour was driven, to look at root level model changes; this may be the only way to see large improvements of 10X, and a path to another 10X or more. Seymour was always pushing speed and many may be surprised to know that follow on machines to the Cray 4 were quite different but also technology driven as usual. They follow further attempts to include additional parallelism in an electrical structure without abandoning the serial structure of computer programs and adding in features that became possible because of advances in technology. Seymour was a “free thinker” always considering and thinking about root model changes that would become necessary. Root level model changes are more easily considered and understood if you consider both the details and big picture coupled with broad based historical knowledge.

If we can start with a blank sheet, it is always good to keep in mind that there is a great need to reduce power and the easy way is to just make everything simpler and eliminate or reduce parts. It’s time to also go back to the very source and reconsider just how users are using machines and what they are trying to accomplish. In other words go back to look not only how real codes load the machine, but how and what they are trying to accomplish. Then we need to go back address different new and faster models. I really don’t think we in the computer business have been good vendors to our users. We have been forcing users to become computer experts just to use our machines. Users are just using a “tool” to get there work done and really don’t care about all this “technology” that we force them to understand in order to use computers. And the complexities are only increasing, with various types of parallelism, cache levels, threads, threadblocks, etc. Seymour always looked at applying his “gift” to give other people a better, faster, simpler, easier to use “tool” to better understand the world around us.

Seymour would sometimes get tired of my continued questions about what else he was thinking about and why he didn’t use it or go in a different direction. Given the right circumstances, Seymour was disarmingly straightforward. At the right time Seymour even welcomed a discussion because, I think, it gave him a way to talk about what he was thinking; it was part of his discovery process when he came to difficult questions or a roadblock. I found I learned much more from what was thrown out and the process to the answer, especially when most answers seemed quite simple – it’s the “Why didn’t I think of that?” moment. The real question becomes not the answer, but rather, if it’s so simple, why didn’t I think of that? You may quickly find that it was really not that simple or you were not asking the right question. Understanding the answer, going to the root and also understanding the history is always much better and far richer if you can and are able to understand all the “whys.” Sometimes, we are all too ready to just look for the “answer.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Answered Prayers for High Frequency Traders? Latency Cut to 20 Nanoseconds

January 23, 2017

“You can buy your way out of bandwidth problems. But latency is divine.”

This sentiment, from Intel Technical Computing Group CTO Mark Seager, seems as old as the Bible, a truth universally acknowledged. Read more…

By Doug Black

CMU’s Latest “Card Shark” – Libratus – is Beating the Poker Pros (Again)

January 20, 2017

It’s starting to look like Carnegie Mellon University has a gambling problem – can’t stay away from the poker table. Read more…

By John Russell

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Enhancing Patient Care with Next-Generation Sequencing

In the ever-evolving world of life sciences, speed, accuracy, and savings are more important than ever. Today’s scientists and healthcare professionals are leveraging high-performance computing (HPC) solutions to solve the world’s greatest health problems and accelerate the diagnoses and treatment of a variety of medical conditions. Read more…

Weekly Twitter Roundup (Jan. 19, 2017)

January 19, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

France’s CEA and Japan’s RIKEN to Partner on ARM and Exascale

January 19, 2017

France’s CEA and Japan’s RIKEN institute announced a multi-faceted five-year collaboration to advance HPC generally and prepare for exascale computing. Among the particulars are efforts to: build out the ARM ecosystem; work on code development and code sharing on the existing and future platforms; share expertise in specific application areas (material and seismic sciences for example); improve techniques for using numerical simulation with big data; and expand HPC workforce training. It seems to be a very full agenda. Read more…

By Nishi Katsuya and John Russell

ARM Waving: Attention, Deployments, and Development

January 18, 2017

It’s been a heady two weeks for the ARM HPC advocacy camp. At this week’s Mont-Blanc Project meeting held at the Barcelona Supercomputer Center, Cray announced plans to build an ARM-based supercomputer in the U.K. while Mont-Blanc selected Cavium’s ThunderX2 ARM chip for its third phase of development. Last week, France’s CEA and Japan’s Riken announced a deep collaboration aimed largely at fostering the ARM ecosystem. This activity follows a busy 2016 when SoftBank acquired ARM, OpenHPC announced ARM support, ARM released its SVE spec, Fujistu chose ARM for the post K machine, and ARM acquired HPC tool provider Allinea in December. Read more…

By John Russell

Women Coders from Russia, Italy, and Poland Top Study

January 17, 2017

According to a study posted on HackerRank today the best women coders as judged by performance on HackerRank challenges come from Russia, Italy, and Poland. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Answered Prayers for High Frequency Traders? Latency Cut to 20 Nanoseconds

January 23, 2017

“You can buy your way out of bandwidth problems. But latency is divine.”

This sentiment, from Intel Technical Computing Group CTO Mark Seager, seems as old as the Bible, a truth universally acknowledged. Read more…

By Doug Black

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

France’s CEA and Japan’s RIKEN to Partner on ARM and Exascale

January 19, 2017

France’s CEA and Japan’s RIKEN institute announced a multi-faceted five-year collaboration to advance HPC generally and prepare for exascale computing. Among the particulars are efforts to: build out the ARM ecosystem; work on code development and code sharing on the existing and future platforms; share expertise in specific application areas (material and seismic sciences for example); improve techniques for using numerical simulation with big data; and expand HPC workforce training. It seems to be a very full agenda. Read more…

By Nishi Katsuya and John Russell

ARM Waving: Attention, Deployments, and Development

January 18, 2017

It’s been a heady two weeks for the ARM HPC advocacy camp. At this week’s Mont-Blanc Project meeting held at the Barcelona Supercomputer Center, Cray announced plans to build an ARM-based supercomputer in the U.K. while Mont-Blanc selected Cavium’s ThunderX2 ARM chip for its third phase of development. Last week, France’s CEA and Japan’s Riken announced a deep collaboration aimed largely at fostering the ARM ecosystem. This activity follows a busy 2016 when SoftBank acquired ARM, OpenHPC announced ARM support, ARM released its SVE spec, Fujistu chose ARM for the post K machine, and ARM acquired HPC tool provider Allinea in December. Read more…

By John Russell

Spurred by Global Ambitions, Inspur in Joint HPC Deal with DDN

January 17, 2017

Inspur, the fast-growth cloud computing and server vendor from China that has several systems on the current Top500 list, and DDN, a leader in high-end storage, have announced a joint sales and marketing agreement to produce solutions based on DDN storage platforms integrated with servers, networking, software and services from Inspur. Read more…

By Doug Black

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

UberCloud Cites Progress in HPC Cloud Computing

January 10, 2017

200 HPC cloud experiments, 80 case studies, and a ton of hands-on experience gained, that’s the harvest of four years of UberCloud HPC Experiments. Read more…

By Wolfgang Gentzsch and Burak Yenier

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

Leading Solution Providers

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

  • arrow
  • Click Here for More Headlines
  • arrow
Share This