Intel Sheds Light on the ‘Corner to Landing’ Leap

By Nicole Hemsoth

December 6, 2013

Since the first details about the MIC architecture emerged, Intel has continually harkened back to their vision of offering a high degree of parallelism inside a power efficient package that could promise programmability.

With the eventual entry of the next generation Xeon Phi hitting the market in years to come with its (still unstated) high number of cores, on-package memory, ability to shape shift from coprocessor to processor along the x86 continuum, many are wondering about what kind of programmatic muscle will be needed to spring from Knights Corner to Knights Landing.

In essence, as we have touched on already, one can look at Knights Landing as simply a new Xeon with higher core counts since at least some of the complexities of using it as a coprocessor will no longer be an issue. Unlike with the current Xeon Phi, transfers across PCIe are eliminated, memory is local and Landing acts as a true processor that can carry over the benefits of parallelism and efficiency of Phi in a processor form factor while still offering the option to use it as a coprocessor for specific highly parallel parts of a given workload. So this should make programming for one of these essentially the same as programming for Xeon—that is, in theory.

Despite the emphasis on extending programmability, make no mistake, it’s not as though parallel programming is suddenly going to become magically simple–and certainly that’s still not the case for using coprocessors, says James Reinders, Intel’s software director. However, there are some notable features that will make the transition more seamless.

When it comes to using Knights Landing as a coprocessor, the real benefits between Knights Corner and Landing will become more apparent. As it stands now, many programmers using accelerators or coprocessor use offload models on mixed (serial and highly parallel) code where they write their programs to run on the processor but with certain highly parallel bits offloaded. The advantage there is that there’s the power of the processors, which compared to accelerators/Phi are much better at serial tasks. Of course, programmers are keenly aware of Amdahl’s Law and are looking to OpenACC and OpenMP directives to address some of these problems with offloading—problems that Intel is addressing by nixing the offloading middleman.

As Reinders described, “One of the big things about Knight’s Landing in this regard is that to make it a processor we had to reduce the effects of Amdhal’s Law. Making Knights Landing a processor means we wanted to build a system around it where the program runs on it but it “offloads itself” in a sense—there’s no such thing as offloading to yourself; you just switch between being somewhat serial to highly parallel just like you do in a program you write for a processor today. However, Knights Landing is more capable of handling highly parallel workloads than any other processor today.”

The other way to program for Knights Landing (or its predecessor, for that matter) is to just treat it as a processor hooked together with other Xeons or Phis using MPI. Landing will support that model as both a processor or coprocessor, Reinders said. “A lot of users today are just taking their applications and using MPI instead of offloading. When you build a Knight’s Landing machine they can all run MPI and since they run a full OS you can do anything that a processor would do.”

By the way, as a side note on the OS, many users on the HPC front will likely not let the OS run wild and eat up a number of the cores (and there are definitely more than 61 on the new chips) and will also have to prevent the OS from munching into the high bandwidth memory it sees sitting nearby. It’s a matter of user-set policy for the number of cores the OS runs on and as for keeping the OS’s greedy hands off the new memory on board, there are workarounds in development around that.

With that specific OS piece in mind, however, it’s easy to see why Reinders is giddy about Landing. “You can think of Knights Landing exactly like it’s a Xeon with lots and lots of (but-we-still-can’t-tell-you-how-many) cores. The big difference is how good it is at highly parallel workloads. It’s a high core count Xeon. That’s how we get extreme compatibility with Knights Landing to make it a processor—every OS that boots on it will look at think it’s a just a Xeon on steroids; it shouldn’t look any different. But again you can set in policy to run it on one of the cores.” He expects that OEMs that supply systems will continue to keep configuring machines with these policies that favor keeping the OS contained and letting the applications have full reign on the other cores.

“We will have a few more years under our belts before we launch Knights Landing and we’ll use that time to continue to refine our hardware and software,”Reinders continues. “But overall, Knights Landing offers a very straightforward migration from Knights Corner, so anyone using the first generation Xeon Phi can move very easily—the thing that is most exciting is that it gets us closer to our vision of programmability.”

Among some of those refinements that will be present in Knights Landing are the 512-bit SIMD capabilities, which will eventually be extended across the entire Intel processor line. Currently with AVX2 and its 256 bit width users can pull 4 double precision operations (or 8 singles) from a single clock, but with the introduction of 512-bit, that performance will double for both single and double-precision. There is already 512 capability built into current Xeon Phi, but it’s only for use in the coprocessor since it hasn’t been fully synched with the full set of x86 capabilities. People using the current Phi thus don’t have the throughput possibilities or all the functionality that Intel will roll out with Knights Landing.

Reinders has been teaching users how to tap into Xeon Phi and as he’s introducing concepts leading up to Knights Landing. Everyone is “looking for holes in the armor,” but he argues that the ones they know about they’re working to address through the ecosystem, compilers, and in house. “The simple answer is that anyone who already programs for Knights Corner will find the Landing leap an easy one since there’s no new learning,” he says.

This bodes well for Intel to take this highly parallel approach well beyond HPC applications in the future, especially if they continue to push the idea that there’s nothing “special” (i.e., difficult or accelerator-like for programmers) about it—that it’s simply a high core count processor. The beauty is that they can eventually round out their suite of processor choices so users can continually tailor these choices around their workloads and the degree of parallelism, performance and power required.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’s introduction of an ARM-based system (XC-50) last November. Read more…

By John Russell

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Symposium on Computer Architecture (ISCA) in Los Angeles. The Read more…

By Staff

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Leading Solution Providers

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This