Intel Sheds Light on the ‘Corner to Landing’ Leap

By Nicole Hemsoth

December 6, 2013

Since the first details about the MIC architecture emerged, Intel has continually harkened back to their vision of offering a high degree of parallelism inside a power efficient package that could promise programmability.

With the eventual entry of the next generation Xeon Phi hitting the market in years to come with its (still unstated) high number of cores, on-package memory, ability to shape shift from coprocessor to processor along the x86 continuum, many are wondering about what kind of programmatic muscle will be needed to spring from Knights Corner to Knights Landing.

In essence, as we have touched on already, one can look at Knights Landing as simply a new Xeon with higher core counts since at least some of the complexities of using it as a coprocessor will no longer be an issue. Unlike with the current Xeon Phi, transfers across PCIe are eliminated, memory is local and Landing acts as a true processor that can carry over the benefits of parallelism and efficiency of Phi in a processor form factor while still offering the option to use it as a coprocessor for specific highly parallel parts of a given workload. So this should make programming for one of these essentially the same as programming for Xeon—that is, in theory.

Despite the emphasis on extending programmability, make no mistake, it’s not as though parallel programming is suddenly going to become magically simple–and certainly that’s still not the case for using coprocessors, says James Reinders, Intel’s software director. However, there are some notable features that will make the transition more seamless.

When it comes to using Knights Landing as a coprocessor, the real benefits between Knights Corner and Landing will become more apparent. As it stands now, many programmers using accelerators or coprocessor use offload models on mixed (serial and highly parallel) code where they write their programs to run on the processor but with certain highly parallel bits offloaded. The advantage there is that there’s the power of the processors, which compared to accelerators/Phi are much better at serial tasks. Of course, programmers are keenly aware of Amdahl’s Law and are looking to OpenACC and OpenMP directives to address some of these problems with offloading—problems that Intel is addressing by nixing the offloading middleman.

As Reinders described, “One of the big things about Knight’s Landing in this regard is that to make it a processor we had to reduce the effects of Amdhal’s Law. Making Knights Landing a processor means we wanted to build a system around it where the program runs on it but it “offloads itself” in a sense—there’s no such thing as offloading to yourself; you just switch between being somewhat serial to highly parallel just like you do in a program you write for a processor today. However, Knights Landing is more capable of handling highly parallel workloads than any other processor today.”

The other way to program for Knights Landing (or its predecessor, for that matter) is to just treat it as a processor hooked together with other Xeons or Phis using MPI. Landing will support that model as both a processor or coprocessor, Reinders said. “A lot of users today are just taking their applications and using MPI instead of offloading. When you build a Knight’s Landing machine they can all run MPI and since they run a full OS you can do anything that a processor would do.”

By the way, as a side note on the OS, many users on the HPC front will likely not let the OS run wild and eat up a number of the cores (and there are definitely more than 61 on the new chips) and will also have to prevent the OS from munching into the high bandwidth memory it sees sitting nearby. It’s a matter of user-set policy for the number of cores the OS runs on and as for keeping the OS’s greedy hands off the new memory on board, there are workarounds in development around that.

With that specific OS piece in mind, however, it’s easy to see why Reinders is giddy about Landing. “You can think of Knights Landing exactly like it’s a Xeon with lots and lots of (but-we-still-can’t-tell-you-how-many) cores. The big difference is how good it is at highly parallel workloads. It’s a high core count Xeon. That’s how we get extreme compatibility with Knights Landing to make it a processor—every OS that boots on it will look at think it’s a just a Xeon on steroids; it shouldn’t look any different. But again you can set in policy to run it on one of the cores.” He expects that OEMs that supply systems will continue to keep configuring machines with these policies that favor keeping the OS contained and letting the applications have full reign on the other cores.

“We will have a few more years under our belts before we launch Knights Landing and we’ll use that time to continue to refine our hardware and software,”Reinders continues. “But overall, Knights Landing offers a very straightforward migration from Knights Corner, so anyone using the first generation Xeon Phi can move very easily—the thing that is most exciting is that it gets us closer to our vision of programmability.”

Among some of those refinements that will be present in Knights Landing are the 512-bit SIMD capabilities, which will eventually be extended across the entire Intel processor line. Currently with AVX2 and its 256 bit width users can pull 4 double precision operations (or 8 singles) from a single clock, but with the introduction of 512-bit, that performance will double for both single and double-precision. There is already 512 capability built into current Xeon Phi, but it’s only for use in the coprocessor since it hasn’t been fully synched with the full set of x86 capabilities. People using the current Phi thus don’t have the throughput possibilities or all the functionality that Intel will roll out with Knights Landing.

Reinders has been teaching users how to tap into Xeon Phi and as he’s introducing concepts leading up to Knights Landing. Everyone is “looking for holes in the armor,” but he argues that the ones they know about they’re working to address through the ecosystem, compilers, and in house. “The simple answer is that anyone who already programs for Knights Corner will find the Landing leap an easy one since there’s no new learning,” he says.

This bodes well for Intel to take this highly parallel approach well beyond HPC applications in the future, especially if they continue to push the idea that there’s nothing “special” (i.e., difficult or accelerator-like for programmers) about it—that it’s simply a high core count processor. The beauty is that they can eventually round out their suite of processor choices so users can continually tailor these choices around their workloads and the degree of parallelism, performance and power required.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Which Schools Produce the Top Coders in the World?

December 8, 2016

Ever wonder which universities worldwide produce the best coders? The answers may surprise you, at least as judged by the results of a competition posted yesterday on the HackerRank blog. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Embraces FPGAs, ‘Elastic’ GPUs

December 2, 2016

A new instance type rolled out this week by Amazon Web Services is based on customizable field programmable gate arrays that promise to strike a balance between performance and cost as emerging workloads create requirements often unmet by general-purpose processors. Read more…

By George Leopold

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 1, 2016)

December 1, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Intel Details AI Hardware Strategy for Post-GPU Age

November 21, 2016

Last week at SC16, Intel revealed its product roadmap for embedding its processors with key capabilities and attributes needed to take artificial intelligence (AI) to the next level. Read more…

By Alex Woodie

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Leading Solution Providers

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This