Intel Sheds Light on the ‘Corner to Landing’ Leap

By Nicole Hemsoth

December 6, 2013

Since the first details about the MIC architecture emerged, Intel has continually harkened back to their vision of offering a high degree of parallelism inside a power efficient package that could promise programmability.

With the eventual entry of the next generation Xeon Phi hitting the market in years to come with its (still unstated) high number of cores, on-package memory, ability to shape shift from coprocessor to processor along the x86 continuum, many are wondering about what kind of programmatic muscle will be needed to spring from Knights Corner to Knights Landing.

In essence, as we have touched on already, one can look at Knights Landing as simply a new Xeon with higher core counts since at least some of the complexities of using it as a coprocessor will no longer be an issue. Unlike with the current Xeon Phi, transfers across PCIe are eliminated, memory is local and Landing acts as a true processor that can carry over the benefits of parallelism and efficiency of Phi in a processor form factor while still offering the option to use it as a coprocessor for specific highly parallel parts of a given workload. So this should make programming for one of these essentially the same as programming for Xeon—that is, in theory.

Despite the emphasis on extending programmability, make no mistake, it’s not as though parallel programming is suddenly going to become magically simple–and certainly that’s still not the case for using coprocessors, says James Reinders, Intel’s software director. However, there are some notable features that will make the transition more seamless.

When it comes to using Knights Landing as a coprocessor, the real benefits between Knights Corner and Landing will become more apparent. As it stands now, many programmers using accelerators or coprocessor use offload models on mixed (serial and highly parallel) code where they write their programs to run on the processor but with certain highly parallel bits offloaded. The advantage there is that there’s the power of the processors, which compared to accelerators/Phi are much better at serial tasks. Of course, programmers are keenly aware of Amdahl’s Law and are looking to OpenACC and OpenMP directives to address some of these problems with offloading—problems that Intel is addressing by nixing the offloading middleman.

As Reinders described, “One of the big things about Knight’s Landing in this regard is that to make it a processor we had to reduce the effects of Amdhal’s Law. Making Knights Landing a processor means we wanted to build a system around it where the program runs on it but it “offloads itself” in a sense—there’s no such thing as offloading to yourself; you just switch between being somewhat serial to highly parallel just like you do in a program you write for a processor today. However, Knights Landing is more capable of handling highly parallel workloads than any other processor today.”

The other way to program for Knights Landing (or its predecessor, for that matter) is to just treat it as a processor hooked together with other Xeons or Phis using MPI. Landing will support that model as both a processor or coprocessor, Reinders said. “A lot of users today are just taking their applications and using MPI instead of offloading. When you build a Knight’s Landing machine they can all run MPI and since they run a full OS you can do anything that a processor would do.”

By the way, as a side note on the OS, many users on the HPC front will likely not let the OS run wild and eat up a number of the cores (and there are definitely more than 61 on the new chips) and will also have to prevent the OS from munching into the high bandwidth memory it sees sitting nearby. It’s a matter of user-set policy for the number of cores the OS runs on and as for keeping the OS’s greedy hands off the new memory on board, there are workarounds in development around that.

With that specific OS piece in mind, however, it’s easy to see why Reinders is giddy about Landing. “You can think of Knights Landing exactly like it’s a Xeon with lots and lots of (but-we-still-can’t-tell-you-how-many) cores. The big difference is how good it is at highly parallel workloads. It’s a high core count Xeon. That’s how we get extreme compatibility with Knights Landing to make it a processor—every OS that boots on it will look at think it’s a just a Xeon on steroids; it shouldn’t look any different. But again you can set in policy to run it on one of the cores.” He expects that OEMs that supply systems will continue to keep configuring machines with these policies that favor keeping the OS contained and letting the applications have full reign on the other cores.

“We will have a few more years under our belts before we launch Knights Landing and we’ll use that time to continue to refine our hardware and software,”Reinders continues. “But overall, Knights Landing offers a very straightforward migration from Knights Corner, so anyone using the first generation Xeon Phi can move very easily—the thing that is most exciting is that it gets us closer to our vision of programmability.”

Among some of those refinements that will be present in Knights Landing are the 512-bit SIMD capabilities, which will eventually be extended across the entire Intel processor line. Currently with AVX2 and its 256 bit width users can pull 4 double precision operations (or 8 singles) from a single clock, but with the introduction of 512-bit, that performance will double for both single and double-precision. There is already 512 capability built into current Xeon Phi, but it’s only for use in the coprocessor since it hasn’t been fully synched with the full set of x86 capabilities. People using the current Phi thus don’t have the throughput possibilities or all the functionality that Intel will roll out with Knights Landing.

Reinders has been teaching users how to tap into Xeon Phi and as he’s introducing concepts leading up to Knights Landing. Everyone is “looking for holes in the armor,” but he argues that the ones they know about they’re working to address through the ecosystem, compilers, and in house. “The simple answer is that anyone who already programs for Knights Corner will find the Landing leap an easy one since there’s no new learning,” he says.

This bodes well for Intel to take this highly parallel approach well beyond HPC applications in the future, especially if they continue to push the idea that there’s nothing “special” (i.e., difficult or accelerator-like for programmers) about it—that it’s simply a high core count processor. The beauty is that they can eventually round out their suite of processor choices so users can continually tailor these choices around their workloads and the degree of parallelism, performance and power required.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Why Student Cluster Competitions are Better than World Cup

June 21, 2018

My last article about the ISC18 Student Cluster Competition, titled “World Cup is Lame Compared to This Competition”, may have implied that I believe Student Cluster Competitions are better than World Cup soccer in s Read more…

By Dan Olds

European HPC Summit Week and PRACEdays 2018: Slaying Dragons and SHAPEing Futures One SME at a Time

June 20, 2018

The University of Ljubljana in Slovenia hosted the third annual EHPCSW18 and fifth annual PRACEdays18 events which opened May 29, 2018. The conference was chaired by PRACE Council Vice-Chair Sergi Girona (Barcelona Super Read more…

By Elizabeth Leake (STEM-Trek for HPCwire)

An Overview of ‘OpenACC for Programmers’ from the Book’s Editors

June 20, 2018

In an era of multicore processors coupled with manycore accelerators in all kinds of devices from smartphones all the way to supercomputers, it is important to train current and future computational scientists of all dom Read more…

By Sunita Chandrasekaran and Guido Juckeland

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Preview the World’s Smartest Supercomputer at ISC 2018

Introducing an accelerated IT infrastructure for HPC & AI workloads Read more…

Cray Introduces All Flash Lustre Storage Solution Targeting HPC

June 19, 2018

Citing the rise of IOPS-intensive workflows and more affordable flash technology, Cray today introduced the L300F, a scalable all-flash storage solution whose primary use case is to support high IOPS rates to/from a scra Read more…

By John Russell

European HPC Summit Week and PRACEdays 2018: Slaying Dragons and SHAPEing Futures One SME at a Time

June 20, 2018

The University of Ljubljana in Slovenia hosted the third annual EHPCSW18 and fifth annual PRACEdays18 events which opened May 29, 2018. The conference was chair Read more…

By Elizabeth Leake (STEM-Trek for HPCwire)

Cray Introduces All Flash Lustre Storage Solution Targeting HPC

June 19, 2018

Citing the rise of IOPS-intensive workflows and more affordable flash technology, Cray today introduced the L300F, a scalable all-flash storage solution whose p Read more…

By John Russell

Sandia to Take Delivery of World’s Largest Arm System

June 18, 2018

While the enterprise remains circumspect on prospects for Arm servers in the datacenter, the leadership HPC community is taking a bolder, brighter view of the x86 server CPU alternative. Amongst current and planned Arm HPC installations – i.e., the innovative Mont-Blanc project, led by Bull/Atos, the 'Isambard’ Cray XC50 going into the University of Bristol, and commitments from both Japan and France among others -- HPE is announcing that it will be supply the United States National Nuclear Security Administration (NNSA) with a 2.3 petaflops peak Arm-based system, named Astra. Read more…

By Tiffany Trader

The Machine Learning Hype Cycle and HPC

June 14, 2018

Like many other HPC professionals I’m following the hype cycle around machine learning/deep learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectation’ but not quite yet starting the descent into the ‘trough of disillusionment. This still raises the probability that... Read more…

By Dairsie Latimer

Xiaoxiang Zhu Receives the 2018 PRACE Ada Lovelace Award for HPC

June 13, 2018

Xiaoxiang Zhu, who works for the German Aerospace Center (DLR) and Technical University of Munich (TUM), was awarded the 2018 PRACE Ada Lovelace Award for HPC for her outstanding contributions in the field of high performance computing (HPC) in Europe. Read more…

By Elizabeth Leake

U.S Considering Launch of National Quantum Initiative

June 11, 2018

Sometime this month the U.S. House Science Committee will introduce legislation to launch a 10-year National Quantum Initiative, according to a recent report by Read more…

By John Russell

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

Exascale USA – Continuing to Move Forward

June 6, 2018

The end of May 2018, saw several important events that continue to advance the Department of Energy’s (DOE) Exascale Computing Initiative (ECI) for the United Read more…

By Alex R. Larzelere

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Sympo Read more…

By Staff

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

Google I/O 2018: AI Everywhere; TPU 3.0 Delivers 100+ Petaflops but Requires Liquid Cooling

May 9, 2018

All things AI dominated discussion at yesterday’s opening of Google’s I/O 2018 developers meeting covering much of Google's near-term product roadmap. The e Read more…

By John Russell

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Franci Read more…

By John Russell

Part One: Deep Dive into 2018 Trends in Life Sciences HPC

March 1, 2018

Life sciences is an interesting lens through which to see HPC. It is perhaps not an obvious choice, given life sciences’ relative newness as a heavy user of H Read more…

By John Russell

Intel Pledges First Commercial Nervana Product ‘Spring Crest’ in 2019

May 24, 2018

At its AI developer conference in San Francisco yesterday, Intel embraced a holistic approach to AI and showed off a broad AI portfolio that includes Xeon processors, Movidius technologies, FPGAs and Intel’s Nervana Neural Network Processors (NNPs), based on the technology it acquired in 2016. Read more…

By Tiffany Trader

Google Charts Two-Dimensional Quantum Course

April 26, 2018

Quantum error correction, essential for achieving universal fault-tolerant quantum computation, is one of the main challenges of the quantum computing field and it’s top of mind for Google’s John Martinis. At a presentation last week at the HPC User Forum in Tucson, Martinis, one of the world's foremost experts in quantum computing, emphasized... Read more…

By Tiffany Trader

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This