Reality Check on Liquid Cooling in the Data Center

December 9, 2013

Evaluating liquid cooling for a data center requires an understanding of both the technical approach and ability of the solution to address the business and operational concerns of the data center.

To be practical, it must not only be technically sound but must provide reduced operational costs (OpEx) and/or capital expenditures (CapEx) and must satisfy other metrics such as serviceability,  monitoring, redundancy, failure isolation and even server warranty coverage.

Approaches to Liquid Cooling

Nearly every data center is liquid cooled today.  Most data centers bring liquid into Computer Room Air Handlers (CRAH) or Computer Room Air Conditioning (CRAC) units to cool the air in the data center.  CRAH units bring chilled water in to cool the air. The refrigerant comes into CRAC units as a liquid.  It is not a question of should we liquid cool? It’s a question of how to liquid cool most efficiency?  How to get server heat into liquid to reduce energy costs, mitigate expansion costs and enable increased density?

There are three significant drawbacks with CRAC and CRAH units. The first is that to produce cold enough air to cool servers, the liquid coolant coming to the data center (facilities liquid) must be refrigerated to a temperature colder than ambient (outdoor) air. Chilling is expensive. The second is CRAC and CRAH units produce cold air at the periphery of the data center and considerable effort is needed to move it to the racks. Third, considerable effort is needed move it through the servers via server fans.

Rear door, in-row and over-row liquid coolers focus on reducing the cost of moving air about the data center by placing the air-cooling unit as closer to the servers. For example, Rear Door Coolers replace rear doors on the rack with a liquid cooled heat exchanger that transfers server heat into liquid as hot air leaves the servers. The servers are still air-cooled and facilities liquid must be brought into the computer room at the same temperatures as is needed for CRAH units, <65 degrees F and that liquid exits at <80 degrees F.  While air handling is simplified expensive chillers are still required and server fans still consume the same amount of energy.

“Direct Touch” cooling replaces air heat sinks with ‘Heat Risers’ which transfer heat to skin of server chassis where cold plates between servers transfer heat to refrigerant so the heat can be removed from the building. This eliminates fans in the server and the need to move air around the data center for server cooling.  However facilities are still needed to cool the refrigerant to <61°F and cold plates between the servers reduce the capacity of a 42U rack to ~35 RUs.

Immersion cooling uses an all liquid path to remove server heat by placing servers in tanks of dielectric fluid or filling custom servers with dielectric fluid.  Key concerns with this technology are the maintenance of servers, large quantities of oil-based coolant in the data center, modification of servers with non-stand parts and poor space utilization as in effect the “racks” are lying on their backs.

The most significant advancement in practical liquid cooling can be seen in Asetek’s RackCDU™ Direct-to-Chip (D2C™) hot water cooling system.

D2C hot water liquid cooling brings cooling liquid directly to the server components that generate the most heat within a server and cools the remaining components with air. This solution removes 60% to 80% of the heat generated by servers with an all-liquid path. Pumps replace fan energy in the data center and server, and hot water eliminates the need for chilling the coolant. The air-cooled side of the solution is also more efficient as lower volumes of warmer air are sufficient to cool the remaining components. D2C liquid cooling dramatically reduces chiller use, CRAH fan energy and server fan energy, delivers energy savings of up to 80% and server rack density increases of 2.5x-5x times compared to air-cooled data centers.

Addressing the Business and Operational Concerns of Data Centers

Cost Containment be it CapEx or OpEx is a necessity for data centers.  30+ Kw/racks enabled by Asetek’s RackCDU D2C enable consolidation and mitigate the need for build-outs.  Cost is further reduced by the use of hot water for cooling. CPUs run quite hot (153°F to 185°F) and hotter for memory and GPUs.  The cooling efficiency of water (4000x air) allows it to cool the components with a much smaller temperature difference than air.  This also reduces the power required for server fans.

The data center does not need all the CRACs or CRAHs normally required and rather than needing an extensive chiller plant outside the data center can use cheap dry coolers.  This is a major impact on both CapEx and OpEx.

Monitoring and Alarming is essential for any technology in the contemporary data center.  Asetek’s RackCDU system includes a software suite that provides monitoring, alerts, including temperatures, flow, pressures and leak detection and importantly can report into data center management software suites.

Failure Isolation is a key metric for data centers. Servers using Asetek’s RackCDU use very low pressure and are insolated in closed loops that exchange heat in the CDU with the facilities water loop.  This is an important difference to cooling systems that use a centralized pumping system. Centralized systems require high pressures and hence the risk of high pressure leaks and wide “blast radius.”

Redundancy is one of sacred cows of data centers.  Asetek’s RackCDU D2C CPU and GPU pump /cold plates are drop in replacements for air heat sinks.  One pump is sufficient to drive the required cooling for the server.  Hence a dual CPU, dual GPU or CPU + GPU server contains its own redundant pumping.

Serviceability is a key requirement for any data center hardware system.  Because the Asetek RackCDU is an extension to a standard rack and has independent quick connects for each server, data center facilities teams can remove or replace servers for repair or upgrade as they do today.

Warranty is an issue with installing after market liquid cooling solutions in that it can void the server manufacture’s warranties.  Asetek as also addressed this issue by teaming up with Signature Technology Group (STG), a warranty service and support firm that will maintain coverage for systems that have been upgraded with Asetek’s liquid-cooling technology.

The reality check on data center liquid cooling is that Asetek has moved liquid cooling from an exotic technology to a practical option for data center operators.

asetek.com

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Quantinuum Reports 99.9% 2-Qubit Gate Fidelity, Caps Eventful 2 Months

April 16, 2024

March and April have been good months for Quantinuum, which today released a blog announcing the ion trap quantum computer specialist has achieved a 99.9% (three nines) two-qubit gate fidelity on its H1 system. The lates Read more…

Mystery Solved: Intel’s Former HPC Chief Now Running Software Engineering Group 

April 15, 2024

Last year, Jeff McVeigh, Intel's readily available leader of the high-performance computing group, suddenly went silent, with no interviews granted or appearances at press conferences.  It led to questions -- what's Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Institute for Human-Centered AI (HAI) put out a yearly report to t Read more…

Crossing the Quantum Threshold: The Path to 10,000 Qubits

April 15, 2024

Editor’s Note: Why do qubit count and quality matter? What’s the difference between physical qubits and logical qubits? Quantum computer vendors toss these terms and numbers around as indicators of the strengths of t Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Hyperion Research: Eleven HPC Predictions for 2024

April 4, 2024

HPCwire is happy to announce a new series with Hyperion Research  - a fact-based market research firm focusing on the HPC market. In addition to providing mark Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Leading Solution Providers

Contributors

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire