Reality Check on Liquid Cooling in the Data Center

December 9, 2013

Evaluating liquid cooling for a data center requires an understanding of both the technical approach and ability of the solution to address the business and operational concerns of the data center.

To be practical, it must not only be technically sound but must provide reduced operational costs (OpEx) and/or capital expenditures (CapEx) and must satisfy other metrics such as serviceability,  monitoring, redundancy, failure isolation and even server warranty coverage.

Approaches to Liquid Cooling

Nearly every data center is liquid cooled today.  Most data centers bring liquid into Computer Room Air Handlers (CRAH) or Computer Room Air Conditioning (CRAC) units to cool the air in the data center.  CRAH units bring chilled water in to cool the air. The refrigerant comes into CRAC units as a liquid.  It is not a question of should we liquid cool? It’s a question of how to liquid cool most efficiency?  How to get server heat into liquid to reduce energy costs, mitigate expansion costs and enable increased density?

There are three significant drawbacks with CRAC and CRAH units. The first is that to produce cold enough air to cool servers, the liquid coolant coming to the data center (facilities liquid) must be refrigerated to a temperature colder than ambient (outdoor) air. Chilling is expensive. The second is CRAC and CRAH units produce cold air at the periphery of the data center and considerable effort is needed to move it to the racks. Third, considerable effort is needed move it through the servers via server fans.

Rear door, in-row and over-row liquid coolers focus on reducing the cost of moving air about the data center by placing the air-cooling unit as closer to the servers. For example, Rear Door Coolers replace rear doors on the rack with a liquid cooled heat exchanger that transfers server heat into liquid as hot air leaves the servers. The servers are still air-cooled and facilities liquid must be brought into the computer room at the same temperatures as is needed for CRAH units, <65 degrees F and that liquid exits at <80 degrees F.  While air handling is simplified expensive chillers are still required and server fans still consume the same amount of energy.

“Direct Touch” cooling replaces air heat sinks with ‘Heat Risers’ which transfer heat to skin of server chassis where cold plates between servers transfer heat to refrigerant so the heat can be removed from the building. This eliminates fans in the server and the need to move air around the data center for server cooling.  However facilities are still needed to cool the refrigerant to <61°F and cold plates between the servers reduce the capacity of a 42U rack to ~35 RUs.

Immersion cooling uses an all liquid path to remove server heat by placing servers in tanks of dielectric fluid or filling custom servers with dielectric fluid.  Key concerns with this technology are the maintenance of servers, large quantities of oil-based coolant in the data center, modification of servers with non-stand parts and poor space utilization as in effect the “racks” are lying on their backs.

The most significant advancement in practical liquid cooling can be seen in Asetek’s RackCDU™ Direct-to-Chip (D2C™) hot water cooling system.

D2C hot water liquid cooling brings cooling liquid directly to the server components that generate the most heat within a server and cools the remaining components with air. This solution removes 60% to 80% of the heat generated by servers with an all-liquid path. Pumps replace fan energy in the data center and server, and hot water eliminates the need for chilling the coolant. The air-cooled side of the solution is also more efficient as lower volumes of warmer air are sufficient to cool the remaining components. D2C liquid cooling dramatically reduces chiller use, CRAH fan energy and server fan energy, delivers energy savings of up to 80% and server rack density increases of 2.5x-5x times compared to air-cooled data centers.

Addressing the Business and Operational Concerns of Data Centers

Cost Containment be it CapEx or OpEx is a necessity for data centers.  30+ Kw/racks enabled by Asetek’s RackCDU D2C enable consolidation and mitigate the need for build-outs.  Cost is further reduced by the use of hot water for cooling. CPUs run quite hot (153°F to 185°F) and hotter for memory and GPUs.  The cooling efficiency of water (4000x air) allows it to cool the components with a much smaller temperature difference than air.  This also reduces the power required for server fans.

The data center does not need all the CRACs or CRAHs normally required and rather than needing an extensive chiller plant outside the data center can use cheap dry coolers.  This is a major impact on both CapEx and OpEx.

Monitoring and Alarming is essential for any technology in the contemporary data center.  Asetek’s RackCDU system includes a software suite that provides monitoring, alerts, including temperatures, flow, pressures and leak detection and importantly can report into data center management software suites.

Failure Isolation is a key metric for data centers. Servers using Asetek’s RackCDU use very low pressure and are insolated in closed loops that exchange heat in the CDU with the facilities water loop.  This is an important difference to cooling systems that use a centralized pumping system. Centralized systems require high pressures and hence the risk of high pressure leaks and wide “blast radius.”

Redundancy is one of sacred cows of data centers.  Asetek’s RackCDU D2C CPU and GPU pump /cold plates are drop in replacements for air heat sinks.  One pump is sufficient to drive the required cooling for the server.  Hence a dual CPU, dual GPU or CPU + GPU server contains its own redundant pumping.

Serviceability is a key requirement for any data center hardware system.  Because the Asetek RackCDU is an extension to a standard rack and has independent quick connects for each server, data center facilities teams can remove or replace servers for repair or upgrade as they do today.

Warranty is an issue with installing after market liquid cooling solutions in that it can void the server manufacture’s warranties.  Asetek as also addressed this issue by teaming up with Signature Technology Group (STG), a warranty service and support firm that will maintain coverage for systems that have been upgraded with Asetek’s liquid-cooling technology.

The reality check on data center liquid cooling is that Asetek has moved liquid cooling from an exotic technology to a practical option for data center operators.

asetek.com

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

UK to Launch Six Major HPC Centers

March 27, 2017

Six high performance computing centers will be formally launched in the U.K. later this week intended to provide wider access to HPC resources to U.K. Read more…

By John Russell

AI in the News: Rao in at Intel, Ng out at Baidu, Nvidia on at Tencent Cloud

March 26, 2017

Just as AI has become the leitmotif of the advanced scale computing market, infusing much of the conversation about HPC in commercial and industrial spheres, it also is impacting high-level management changes in the industry. Read more…

By Doug Black

Scalable Informatics Ceases Operations

March 23, 2017

On the same day we reported on the uncertain future for HPC compiler company PathScale, we are sad to learn that another HPC vendor, Scalable Informatics, is closing its doors. Read more…

By Tiffany Trader

‘Strategies in Biomedical Data Science’ Advances IT-Research Synergies

March 23, 2017

“Strategies in Biomedical Data Science: Driving Force for Innovation” by Jay A. Etchings is both an introductory text and a field guide for anyone working with biomedical data. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Quants Achieving Maximum Compute Power without the Learning Curve

The financial services industry is a fast-paced and data-intensive environment, and financial firms are realizing that they must modernize their IT infrastructures and invest in high performance computing (HPC) tools in order to survive. Read more…

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Google Launches New Machine Learning Journal

March 22, 2017

On Monday, Google announced plans to launch a new peer review journal and “ecosystem” Read more…

By John Russell

Swiss Researchers Peer Inside Chips with Improved X-Ray Imaging

March 22, 2017

Peering inside semiconductor chips using x-ray imaging isn’t new, but the technique hasn’t been especially good or easy to accomplish. Read more…

By John Russell

LANL Simulation Shows Massive Black Holes Break ‘Speed Limit’

March 21, 2017

A new computer simulation based on codes developed at Los Alamos National Laboratory (LANL) is shedding light on how supermassive black holes could have formed in the early universe contrary to most prior models which impose a limit on how fast these massive ‘objects’ can form. Read more…

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

Nvidia Debuts HGX-1 for Cloud; Announces Fujitsu AI Deal

March 9, 2017

On Monday Nvidia announced a major deal with Fujitsu to help build an AI supercomputer for RIKEN using 24 DGX-1 servers. Read more…

By John Russell

HPC4Mfg Advances State-of-the-Art for American Manufacturing

March 9, 2017

Last Friday (March 3, 2017), the High Performance Computing for Manufacturing (HPC4Mfg) program held an industry engagement day workshop in San Diego, bringing together members of the US manufacturing community, national laboratories and universities to discuss the role of high-performance computing as an innovation engine for American manufacturing. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Leading Solution Providers

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This