Reality Check on Liquid Cooling in the Data Center

December 9, 2013

Evaluating liquid cooling for a data center requires an understanding of both the technical approach and ability of the solution to address the business and operational concerns of the data center.

To be practical, it must not only be technically sound but must provide reduced operational costs (OpEx) and/or capital expenditures (CapEx) and must satisfy other metrics such as serviceability,  monitoring, redundancy, failure isolation and even server warranty coverage.

Approaches to Liquid Cooling

Nearly every data center is liquid cooled today.  Most data centers bring liquid into Computer Room Air Handlers (CRAH) or Computer Room Air Conditioning (CRAC) units to cool the air in the data center.  CRAH units bring chilled water in to cool the air. The refrigerant comes into CRAC units as a liquid.  It is not a question of should we liquid cool? It’s a question of how to liquid cool most efficiency?  How to get server heat into liquid to reduce energy costs, mitigate expansion costs and enable increased density?

There are three significant drawbacks with CRAC and CRAH units. The first is that to produce cold enough air to cool servers, the liquid coolant coming to the data center (facilities liquid) must be refrigerated to a temperature colder than ambient (outdoor) air. Chilling is expensive. The second is CRAC and CRAH units produce cold air at the periphery of the data center and considerable effort is needed to move it to the racks. Third, considerable effort is needed move it through the servers via server fans.

Rear door, in-row and over-row liquid coolers focus on reducing the cost of moving air about the data center by placing the air-cooling unit as closer to the servers. For example, Rear Door Coolers replace rear doors on the rack with a liquid cooled heat exchanger that transfers server heat into liquid as hot air leaves the servers. The servers are still air-cooled and facilities liquid must be brought into the computer room at the same temperatures as is needed for CRAH units, <65 degrees F and that liquid exits at <80 degrees F.  While air handling is simplified expensive chillers are still required and server fans still consume the same amount of energy.

“Direct Touch” cooling replaces air heat sinks with ‘Heat Risers’ which transfer heat to skin of server chassis where cold plates between servers transfer heat to refrigerant so the heat can be removed from the building. This eliminates fans in the server and the need to move air around the data center for server cooling.  However facilities are still needed to cool the refrigerant to <61°F and cold plates between the servers reduce the capacity of a 42U rack to ~35 RUs.

Immersion cooling uses an all liquid path to remove server heat by placing servers in tanks of dielectric fluid or filling custom servers with dielectric fluid.  Key concerns with this technology are the maintenance of servers, large quantities of oil-based coolant in the data center, modification of servers with non-stand parts and poor space utilization as in effect the “racks” are lying on their backs.

The most significant advancement in practical liquid cooling can be seen in Asetek’s RackCDU™ Direct-to-Chip (D2C™) hot water cooling system.

D2C hot water liquid cooling brings cooling liquid directly to the server components that generate the most heat within a server and cools the remaining components with air. This solution removes 60% to 80% of the heat generated by servers with an all-liquid path. Pumps replace fan energy in the data center and server, and hot water eliminates the need for chilling the coolant. The air-cooled side of the solution is also more efficient as lower volumes of warmer air are sufficient to cool the remaining components. D2C liquid cooling dramatically reduces chiller use, CRAH fan energy and server fan energy, delivers energy savings of up to 80% and server rack density increases of 2.5x-5x times compared to air-cooled data centers.

Addressing the Business and Operational Concerns of Data Centers

Cost Containment be it CapEx or OpEx is a necessity for data centers.  30+ Kw/racks enabled by Asetek’s RackCDU D2C enable consolidation and mitigate the need for build-outs.  Cost is further reduced by the use of hot water for cooling. CPUs run quite hot (153°F to 185°F) and hotter for memory and GPUs.  The cooling efficiency of water (4000x air) allows it to cool the components with a much smaller temperature difference than air.  This also reduces the power required for server fans.

The data center does not need all the CRACs or CRAHs normally required and rather than needing an extensive chiller plant outside the data center can use cheap dry coolers.  This is a major impact on both CapEx and OpEx.

Monitoring and Alarming is essential for any technology in the contemporary data center.  Asetek’s RackCDU system includes a software suite that provides monitoring, alerts, including temperatures, flow, pressures and leak detection and importantly can report into data center management software suites.

Failure Isolation is a key metric for data centers. Servers using Asetek’s RackCDU use very low pressure and are insolated in closed loops that exchange heat in the CDU with the facilities water loop.  This is an important difference to cooling systems that use a centralized pumping system. Centralized systems require high pressures and hence the risk of high pressure leaks and wide “blast radius.”

Redundancy is one of sacred cows of data centers.  Asetek’s RackCDU D2C CPU and GPU pump /cold plates are drop in replacements for air heat sinks.  One pump is sufficient to drive the required cooling for the server.  Hence a dual CPU, dual GPU or CPU + GPU server contains its own redundant pumping.

Serviceability is a key requirement for any data center hardware system.  Because the Asetek RackCDU is an extension to a standard rack and has independent quick connects for each server, data center facilities teams can remove or replace servers for repair or upgrade as they do today.

Warranty is an issue with installing after market liquid cooling solutions in that it can void the server manufacture’s warranties.  Asetek as also addressed this issue by teaming up with Signature Technology Group (STG), a warranty service and support firm that will maintain coverage for systems that have been upgraded with Asetek’s liquid-cooling technology.

The reality check on data center liquid cooling is that Asetek has moved liquid cooling from an exotic technology to a practical option for data center operators.

asetek.com

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascale” award), parsed out additional information ab Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid whoops and hollers from the crowd, Thomas Sterling presented t Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out plans to push deeper into climate science and develop more gran Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale companies and their embrace of AI and deep learning – tha Read more…

By Doug Black

HPE Extreme Performance Solutions

Creating a Roadmap for HPC Innovation at ISC 2017

In an era where technological advancements are driving innovation to every sector, and powering major economic and scientific breakthroughs, high performance computing (HPC) is crucial to tackle the challenges of today and tomorrow. Read more…

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network designed to emulate and compete with the human brain. In thi Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big data and artificial intelligence software to its top-of-the-l Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “global” launch event in Austin TX. In many ways it was a fu Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it, analysts and journalists want to report on it. Deep learni Read more…

By Doug Black

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid wh Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out pla Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale Read more…

By Doug Black

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big d Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “g Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it Read more…

By Doug Black

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This