Reality Check on Liquid Cooling in the Data Center

December 9, 2013

Evaluating liquid cooling for a data center requires an understanding of both the technical approach and ability of the solution to address the business and operational concerns of the data center.

To be practical, it must not only be technically sound but must provide reduced operational costs (OpEx) and/or capital expenditures (CapEx) and must satisfy other metrics such as serviceability,  monitoring, redundancy, failure isolation and even server warranty coverage.

Approaches to Liquid Cooling

Nearly every data center is liquid cooled today.  Most data centers bring liquid into Computer Room Air Handlers (CRAH) or Computer Room Air Conditioning (CRAC) units to cool the air in the data center.  CRAH units bring chilled water in to cool the air. The refrigerant comes into CRAC units as a liquid.  It is not a question of should we liquid cool? It’s a question of how to liquid cool most efficiency?  How to get server heat into liquid to reduce energy costs, mitigate expansion costs and enable increased density?

There are three significant drawbacks with CRAC and CRAH units. The first is that to produce cold enough air to cool servers, the liquid coolant coming to the data center (facilities liquid) must be refrigerated to a temperature colder than ambient (outdoor) air. Chilling is expensive. The second is CRAC and CRAH units produce cold air at the periphery of the data center and considerable effort is needed to move it to the racks. Third, considerable effort is needed move it through the servers via server fans.

Rear door, in-row and over-row liquid coolers focus on reducing the cost of moving air about the data center by placing the air-cooling unit as closer to the servers. For example, Rear Door Coolers replace rear doors on the rack with a liquid cooled heat exchanger that transfers server heat into liquid as hot air leaves the servers. The servers are still air-cooled and facilities liquid must be brought into the computer room at the same temperatures as is needed for CRAH units, <65 degrees F and that liquid exits at <80 degrees F.  While air handling is simplified expensive chillers are still required and server fans still consume the same amount of energy.

“Direct Touch” cooling replaces air heat sinks with ‘Heat Risers’ which transfer heat to skin of server chassis where cold plates between servers transfer heat to refrigerant so the heat can be removed from the building. This eliminates fans in the server and the need to move air around the data center for server cooling.  However facilities are still needed to cool the refrigerant to <61°F and cold plates between the servers reduce the capacity of a 42U rack to ~35 RUs.

Immersion cooling uses an all liquid path to remove server heat by placing servers in tanks of dielectric fluid or filling custom servers with dielectric fluid.  Key concerns with this technology are the maintenance of servers, large quantities of oil-based coolant in the data center, modification of servers with non-stand parts and poor space utilization as in effect the “racks” are lying on their backs.

The most significant advancement in practical liquid cooling can be seen in Asetek’s RackCDU™ Direct-to-Chip (D2C™) hot water cooling system.

D2C hot water liquid cooling brings cooling liquid directly to the server components that generate the most heat within a server and cools the remaining components with air. This solution removes 60% to 80% of the heat generated by servers with an all-liquid path. Pumps replace fan energy in the data center and server, and hot water eliminates the need for chilling the coolant. The air-cooled side of the solution is also more efficient as lower volumes of warmer air are sufficient to cool the remaining components. D2C liquid cooling dramatically reduces chiller use, CRAH fan energy and server fan energy, delivers energy savings of up to 80% and server rack density increases of 2.5x-5x times compared to air-cooled data centers.

Addressing the Business and Operational Concerns of Data Centers

Cost Containment be it CapEx or OpEx is a necessity for data centers.  30+ Kw/racks enabled by Asetek’s RackCDU D2C enable consolidation and mitigate the need for build-outs.  Cost is further reduced by the use of hot water for cooling. CPUs run quite hot (153°F to 185°F) and hotter for memory and GPUs.  The cooling efficiency of water (4000x air) allows it to cool the components with a much smaller temperature difference than air.  This also reduces the power required for server fans.

The data center does not need all the CRACs or CRAHs normally required and rather than needing an extensive chiller plant outside the data center can use cheap dry coolers.  This is a major impact on both CapEx and OpEx.

Monitoring and Alarming is essential for any technology in the contemporary data center.  Asetek’s RackCDU system includes a software suite that provides monitoring, alerts, including temperatures, flow, pressures and leak detection and importantly can report into data center management software suites.

Failure Isolation is a key metric for data centers. Servers using Asetek’s RackCDU use very low pressure and are insolated in closed loops that exchange heat in the CDU with the facilities water loop.  This is an important difference to cooling systems that use a centralized pumping system. Centralized systems require high pressures and hence the risk of high pressure leaks and wide “blast radius.”

Redundancy is one of sacred cows of data centers.  Asetek’s RackCDU D2C CPU and GPU pump /cold plates are drop in replacements for air heat sinks.  One pump is sufficient to drive the required cooling for the server.  Hence a dual CPU, dual GPU or CPU + GPU server contains its own redundant pumping.

Serviceability is a key requirement for any data center hardware system.  Because the Asetek RackCDU is an extension to a standard rack and has independent quick connects for each server, data center facilities teams can remove or replace servers for repair or upgrade as they do today.

Warranty is an issue with installing after market liquid cooling solutions in that it can void the server manufacture’s warranties.  Asetek as also addressed this issue by teaming up with Signature Technology Group (STG), a warranty service and support firm that will maintain coverage for systems that have been upgraded with Asetek’s liquid-cooling technology.

The reality check on data center liquid cooling is that Asetek has moved liquid cooling from an exotic technology to a practical option for data center operators.

asetek.com

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

Weekly Twitter Roundup (Feb. 23, 2017)

February 23, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

HPC Financial Update (Feb. 2017)

February 22, 2017

In this recurring feature, we’ll provide you with financial highlights from companies in the HPC industry. Check back in regularly for an updated list with the most pertinent fiscal information. Read more…

By Thomas Ayres

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

Rethinking HPC Platforms for ‘Second Gen’ Applications

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. Read more…

By John Russell

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Leading Solution Providers

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

  • arrow
  • Click Here for More Headlines
  • arrow
Share This