Big Data Versus Big Compute

By Tiffany Trader

December 10, 2013

Big data and big compute are not new concepts. Before the term “big data” took off as the buzzword du jour, the HPC community expressed these same ideas as compute-intensive and data-intensive computing. Problems were compute-bound or IO-bound or both.

It is the case, however, that the world is in the midst of a data explosion. In 2013, the amount of data flowing through the Internet was 667 exabytes, an amount equivalent to more than 141 billion DVDs. The quick rise of the big data conceptual framework reflects this paradigm. Big compute works nicely as a complementary term. They are essentially two sides of a coin, or are they?

In a recent TEDx Talk, Virginia Tech professor and noted HPC expert Wu Feng discusses how these elements are experienced differently across nations.

Feng begins his talk with a question: “In today’s rapidly evolving technological world, is our future in big data or big compute?”

As he provides an overview of the terms, Feng references HokieSpeed, the GPU-accelerated supercomputer that he developed, which debuted as the greenest commodity supercomputer in the US in November 2011. HokieSpeed is a big compute resource, notes Feng, capable of calculating 500 trillion operations per second*, 100,000 times faster than a typical PC.

HokieSpeed and other systems like it are being used for epidemiological studies, which can be used to guide public policy in the event of disease outbreaks. Simulations boost scientists’ understanding of how viruses spread, enabling them to assist public health officials in devising appropriate containment measures.

Another HokieSpeed project aims to reverse-engineer the brain. Researchers are trying to find repeating patterns of higher-order motor function in EEG brain readings. Simulations are used map neurological pathways.

One of the neurological ailments in the news today is called CTE, a progressive, degenerative brain disease that is affecting athletes with a history of brain trauma, namely concussions. CTE can only be definitely diagnosed after death, but neurologists are working towards diagnosing and treating CTE in living patients. On a PC, this kind of research would take months or years instead of hours or days.

Big data has many definitions, and one important characteristic is that it’s relative, i.e., more data than you are used to. “Big data is your humongous haystack and various algorithms that you use to root around that haystack. Big compute is lots of metal detectors,” explains Feng. “They’re the devices with which you are going to try and find all the little needles of information in the haystack that you can glean some insight and knowledge from.”

Feng makes the case that different nations have different priorities when it comes to investing in big data or big compute.

Back in May 2013, Feng spoke with White House officials to discuss DNA sequencing research in the life sciences. One of the applications here includes finding mutations in genomes. This makes it possible to then infer different pathways that are causing cancer, setting the stage for potential treatments. At this function, there was clearly a focus on big data, notes Feng, while big compute, while important, was clearly secondary.

Three weeks later, Feng traveled to China as part of a US delegation, where he found that the converse was true.

“Here, we look at big data as being more important,” Feng states. “And in China, big compute is more important than big data, so much so that they created a supercomputer called TIANHE-2 that is 282 times faster than HokieSpeed and twice as fast as the fastest US supercomputer.”

They view big data merely as an application area of big compute, notes Feng.

Feng contends that big data, at least in the US, has been elevated to a position above big compute, in part because the compute side is so often hidden from the user. For example, Google returns search results with lightening speed, but the average person does not realize the immensity of the underlying computational infrastructure that has enabled this transaction.

He cites IBM Watson’s Jeopardy appearance as another example of a very visible “big data” application where the compute side was essentially hidden from the audience.

So what should we be investing in? asks Feng. As complementary forces, the data and compute go hand-in-hand. “In order to make sense of the data, we need to compute on the data.” There is a cycle in which data becomes information, then knowledge, then wisdom – and each of these steps requires computing.

*Note: According to Virginia Tech’s announcement, HokieSpeed claims “a single-precision peak of 455 teraflops, 455 trillion operations per second, and a double-precision peak of 240 teraflops, or 240 trillion operations per second.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IBM Launches Commercial Quantum Network with Samsung, ORNL

December 14, 2017

In the race to commercialize quantum computing, IBM is one of several companies leading the pack. Today, IBM announced it had signed JPMorgan Chase, Daimler AG, Samsung and a number of other corporations to its IBM Q Net Read more…

By Tiffany Trader

TACC Researchers Test AI Traffic Monitoring Tool in Austin

December 13, 2017

Traffic jams and mishaps are often painful and sometimes dangerous facts of life. At this week’s IEEE International Conference on Big Data being held in Boston, researchers from TACC and colleagues will present a new Read more…

By HPCwire Staff

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in what has become an overwhelmingly two-socket landscape in the d Read more…

By John Russell

HPE Extreme Performance Solutions

Explore the Origins of Space with COSMOS and Memory-Driven Computing

From the formation of black holes to the origins of space, data is the key to unlocking the secrets of the early universe. Read more…

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as several tech giants jockey to establish a pole position in the race toward commercialization of quantum. This week, Microsoft took the next step in Read more…

By Tiffany Trader

IBM Launches Commercial Quantum Network with Samsung, ORNL

December 14, 2017

In the race to commercialize quantum computing, IBM is one of several companies leading the pack. Today, IBM announced it had signed JPMorgan Chase, Daimler AG, Read more…

By Tiffany Trader

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in wha Read more…

By John Russell

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as several tech giants jockey to establish a pole position in the race toward commercializ Read more…

By Tiffany Trader

HPC Iron, Soft, Data, People – It Takes an Ecosystem!

December 11, 2017

Cutting edge advanced computing hardware (aka big iron) does not stand by itself. These computers are the pinnacle of a myriad of technologies that must be care Read more…

By Alex R. Larzelere

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Microsoft Spins Cycle Computing into Core Azure Product

December 5, 2017

Last August, cloud giant Microsoft acquired HPC cloud orchestration pioneer Cycle Computing. Since then the focus has been on integrating Cycle’s organization Read more…

By John Russell

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPE In-Memory Platform Comes to COSMOS

November 30, 2017

Hewlett Packard Enterprise is on a mission to accelerate space research. In August, it sent the first commercial-off-the-shelf HPC system into space for testing Read more…

By Tiffany Trader

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This