Big Data Versus Big Compute

By Tiffany Trader

December 10, 2013

Big data and big compute are not new concepts. Before the term “big data” took off as the buzzword du jour, the HPC community expressed these same ideas as compute-intensive and data-intensive computing. Problems were compute-bound or IO-bound or both.

It is the case, however, that the world is in the midst of a data explosion. In 2013, the amount of data flowing through the Internet was 667 exabytes, an amount equivalent to more than 141 billion DVDs. The quick rise of the big data conceptual framework reflects this paradigm. Big compute works nicely as a complementary term. They are essentially two sides of a coin, or are they?

In a recent TEDx Talk, Virginia Tech professor and noted HPC expert Wu Feng discusses how these elements are experienced differently across nations.

Feng begins his talk with a question: “In today’s rapidly evolving technological world, is our future in big data or big compute?”

As he provides an overview of the terms, Feng references HokieSpeed, the GPU-accelerated supercomputer that he developed, which debuted as the greenest commodity supercomputer in the US in November 2011. HokieSpeed is a big compute resource, notes Feng, capable of calculating 500 trillion operations per second*, 100,000 times faster than a typical PC.

HokieSpeed and other systems like it are being used for epidemiological studies, which can be used to guide public policy in the event of disease outbreaks. Simulations boost scientists’ understanding of how viruses spread, enabling them to assist public health officials in devising appropriate containment measures.

Another HokieSpeed project aims to reverse-engineer the brain. Researchers are trying to find repeating patterns of higher-order motor function in EEG brain readings. Simulations are used map neurological pathways.

One of the neurological ailments in the news today is called CTE, a progressive, degenerative brain disease that is affecting athletes with a history of brain trauma, namely concussions. CTE can only be definitely diagnosed after death, but neurologists are working towards diagnosing and treating CTE in living patients. On a PC, this kind of research would take months or years instead of hours or days.

Big data has many definitions, and one important characteristic is that it’s relative, i.e., more data than you are used to. “Big data is your humongous haystack and various algorithms that you use to root around that haystack. Big compute is lots of metal detectors,” explains Feng. “They’re the devices with which you are going to try and find all the little needles of information in the haystack that you can glean some insight and knowledge from.”

Feng makes the case that different nations have different priorities when it comes to investing in big data or big compute.

Back in May 2013, Feng spoke with White House officials to discuss DNA sequencing research in the life sciences. One of the applications here includes finding mutations in genomes. This makes it possible to then infer different pathways that are causing cancer, setting the stage for potential treatments. At this function, there was clearly a focus on big data, notes Feng, while big compute, while important, was clearly secondary.

Three weeks later, Feng traveled to China as part of a US delegation, where he found that the converse was true.

“Here, we look at big data as being more important,” Feng states. “And in China, big compute is more important than big data, so much so that they created a supercomputer called TIANHE-2 that is 282 times faster than HokieSpeed and twice as fast as the fastest US supercomputer.”

They view big data merely as an application area of big compute, notes Feng.

Feng contends that big data, at least in the US, has been elevated to a position above big compute, in part because the compute side is so often hidden from the user. For example, Google returns search results with lightening speed, but the average person does not realize the immensity of the underlying computational infrastructure that has enabled this transaction.

He cites IBM Watson’s Jeopardy appearance as another example of a very visible “big data” application where the compute side was essentially hidden from the audience.

So what should we be investing in? asks Feng. As complementary forces, the data and compute go hand-in-hand. “In order to make sense of the data, we need to compute on the data.” There is a cycle in which data becomes information, then knowledge, then wisdom – and each of these steps requires computing.

*Note: According to Virginia Tech’s announcement, HokieSpeed claims “a single-precision peak of 455 teraflops, 455 trillion operations per second, and a double-precision peak of 240 teraflops, or 240 trillion operations per second.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Google Launches Site to Share its NYC-based Algorithm Research

August 22, 2017

Much of Google’s algorithm development occurs in groups scattered throughout New York City. Yesterday, Google launched a single website - NYC Algorithms and Optimization Team page - to provide a deeper view into all of Read more…

By John Russell

Dell Strikes Reseller Deal with Atos; Supplants SGI

August 22, 2017

Dell EMC and Atos announced a reseller deal today in which Dell will offer Atos’ high-end 8- and 16-socket Bullion servers. Some move from Dell had been expected following Hewlett Packard Enterprise’s purchase of SGI Read more…

By John Russell

Glimpses of Today’s Total Solar Eclipse

August 21, 2017

Here are a few arresting images posted by NASA of today’s total solar eclipse. Such astronomical events have always captured our imagination and it’s not hard to understand why such occurrences were often greeted wit Read more…

By John Russell

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Tech Giants Outline Battle Plans for Future HPC Market

August 21, 2017

Four companies engaged in a cage fight for leadership in the emerging HPC market of the 2020s are, despite deep differences in some areas, in violent agreement on at least one thing: the power consumption and latency pen Read more…

By Doug Black

Tech Giants Outline Battle Plans for Future HPC Market

August 21, 2017

Four companies engaged in a cage fight for leadership in the emerging HPC market of the 2020s are, despite deep differences in some areas, in violent agreement Read more…

By Doug Black

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Leading Solution Providers

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This