Adding MUSCLE to Multiscale Simulations

By Joris Borgdorff, Derek Groen, and Mariusz Mamonski

December 11, 2013

Multiscale models help understand phenomena with a wider scope or an increased level of detail. These models allow us to take the best from multiple worlds, for example by combining models with a fine-grained time or space resolution with models that capture systems over a large baseline.

Classical examples of multiscale modeling include coupling atomistic models to coarse-grained models, where several atoms are represented instead as a single fused particle, or coupling fine fluid dynamics models to coarser structural mechanics models. In both cases, we have a fairly good understanding of the single scale phenomena, but still have little knowledge of the interactions between these phenomena. As understanding these interactions is key to understanding these phenomena as a whole, many researchers are now actively developing and using multiscale modeling techniques [1].

Researchers from different disciplines recognized their common need for a general multiscale computing approach, and started the European e-Infrastructure MAPPER project in 2010. The project aimed to bring their demanding multiscale applications to HPC, in an approach that uses the commonalities in multiscale modeling for applications in biomedicine, hydrology, nanomaterials, fusion, and systems biology.

muscle5The project settled on the theoretical and components-based Multiscale Modeling and Simulation Framework [2], which defines a multiscale model as a set of coupled single scale models (see Fig. 1). This approach allows code reuse, since single scale models often already exist, and defines clear opportunities for scheduling and distributing multiscale models, since the coupling is separated from the single scale code. Single scale models (or submodels) are implemented, verified, and validated in isolation, after which their interaction is added. They interact through input and output ports, sending or receiving simple parameters there, or entire datasets or geometries. A conduit transports the data from one port to another and intermediate components transform the data, implementing so-called scale-bridging techniques.

The Multiscale Coupling Library and Environment 2 (MUSCLE 2, http://apps.man.poznan.pl/trac/muscle) was created to implement and execute multiscale models with feedback loops, which we call cyclic coupling topologies. MUSCLE is truly a domain-independent approach, as it has so far been adopted, amongst others, by the abovementioned applications in MAPPER, and run on several supercomputers and clusters in Europe, as well as the Amazon cloud infrastructure. It consists of a library,  scripted coupling and a runtime environment.

Figure 2. Layered design of MUSCLE 2, separating implementation, coupling and execution.
Figure 2. Layered design of MUSCLE 2, separating implementation, coupling and execution.

By design, submodels do their computations independently, and MUSCLE 2 allows them to be implemented in different programming languages (C, C++, Fortran, Java, Scala, Python, or MATLAB) and for them to run on multiple machines. Conduits in MUSCLE 2 use shared memory communication where possible, and TCP/IP communication otherwise.  Using TCP/IP makes communicating between different computers as transparent as running on a single host. A central simulation manager acts as a white-page service for the submodels in a simulation, but after a submodel is registered there it does decentralized message passing with other submodels to prevent possible bottlenecks. By running each submodel in a separate process or thread, MUSCLE 2 has inherent multiscale parallelism.

MUSCLE 2 separates the submodel code, which just knows about input and output ports, from coupling code, which knows which ports will be coupled. This allows users to change the coupling topology without recompiling or redeploying code. Additionally, the coupling code is independent from the resources that the simulation will be eventually run on, so the same coupling can be submitted to multiple machines or be spread out over them, even when they reside in different countries. This allows us not only to use more resources but, more importantly, to take advantage of architectures that are optimal for each of the models involved. For example, some models in a simulation may greatly benefit from GPGPUs, whereas others have large memory requirements.

Within a supercomputer, MUSCLE 2 can make direct connections between processes, but almost all supercomputers have firewalls in place that prevent direct connections between worker nodes in different supercomputers. In MUSCLE 2we resolve this by providing a TCP/IP forwarding service, the MUSCLE Transport Overlay, that runs on interactive nodes of the cluster and forwards messages between MUSCLE 2 installations on different clusters.

To optimize the speed for large messages, MUSCLE 2 has the option of using the MPWide library (http://www.github.com/djgroen/MPWide), a high-performance communication library that was used to cosmological simulations in parallelized across multiple supercomputers [3]. MUSCLE 2 processes can be run directly as a supercomputer job and have few dependencies, but require the address of the site simulation manager to connect to other processes. This can be done manually or automated via a dedicated service such as provided by the QosCosGrid software stack (http://www.qoscosgrid.org/). QosCosGrid provides middleware solutions, notably on the Polish national grid (PL-Grid), that allow users to schedule and coordinate simulations running in multiple distributed HPC resources [4]. MUSCLE 2 is open source software (LGPL version 3 license) that runs on Linux and OS X and can be freely installed without administrative privileges.

In memoriam Mariusz Mamonski (1984 – 2013)

We wish to dedicate this paper to the memory of Mariusz Mamonski, whose sudden decease came as a shock to us all. The MUSCLE 2 team would like to thank Mariusz for all his professional and personal contributions to distributed multiscale computing. His dedication to end-users, his insight in software quality and his experience with infrastructures was truly impressive, and he will be sorely missed.

Biographies:

muscle3Joris Borgdorff is a PhD candidate at the Computational Science group of the University of Amsterdam, researching the formal background of multiscale and complex systems modeling and the applied aspects of distributed multiscale computing. He received a BSc in Mathematics and in Computer Science (2006) and an MSc in Applied Computing Science (2009) from Utrecht University. He is involved in the European MAPPER and Sophocles projects.

 

muscle2Derek Groen is a post-doctoral researcher at the Centre for Computational Science at University College London and a Fellow of the Software Sustainability Institute. He has expertise in high performance and distributed computing, as well as multiscale simulation. Derek has worked on a range of applications, and modelled star clusters, cosmological dark matter structures, clay-polymer nanocomposite materials, turbulence and human bloodflow using supercomputers. He obtained his PhD in Computational Astrophysics in Amsterdam in 2010.

 

muscle1Mariusz Mamonski (1984 – 2013) received his diploma in Computer Science at the Poznan University of Technology (Laboratory of Computing Systems) in 2008. He started working at the Application Department of the Poznan Supercomputing and Networking Center in 2005. He contributed to several research EU projects, in particular: GridLab, InteliGrid, BREIN and QosCosGrid, and was involved in the national and European e-Infrastracture projects PL-Grid and MAPPER. His research primarily focussed on web services, queueing systems and parallel execution and programing environments. He was an active member of the Open Grid Forum Distributed Resource Management Application API (OGF DRMAA) working group.

Acknowledgements

We would like to thank the Bartosz Bosak and Krzysztof Kurowski from the Poznan Supercomputing and Networking Center for their support and input, and we thank Alfons G. Hoekstra from the University of Amsterdam for his feedback.

References:

[1] Groen et al., Survey of Multiscale and Multiphysics Applications and Communities, IEEE Computing in Science and Engineering, http://dx.doi.org/10.1109/MCSE.2013.47.

[2] Borgdorff et al., Foundations of distributed multiscale computing: Formalization, specification, and analysis, Journal of Parallel and Distributed Computing http://dx.doi.org/10.1016/j.jpdc.2012.12.011

[3] Groen et al., A lightweight communication library for distributed computing, accepted by the Journal of Open Research Software, http://arxiv.org/abs/1312.0910.

[4] Kravtsov et al., Grid-enabling complex system applications with QosCosGrid: An architectural perspective, Proceedings of the 2008 International Conference on Grid Computing & Applications, Las Vegas, Nevada, USA, 2008, pp. 168–174.

[5] Borgdorff et al., Distributed Multiscale Computing with MUSCLE 2, the Multiscale Coupling Library and Environment, submitted to the Journal of Computational Science, http://arxiv.org/abs/1311.5740

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 8, 2016)

December 8, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Qualcomm Targets Intel Datacenter Dominance with 10nm ARM-based Server Chip

December 8, 2016

Claiming no less than a reshaping of the future of Intel-dominated datacenter computing, Qualcomm Technologies, the market leader in smartphone chips, announced the forthcoming availability of what it says is the world’s first 10nm processor for servers, based on ARM Holding’s chip designs. Read more…

By Doug Black

Which Schools Produce the Top Coders in the World?

December 8, 2016

Ever wonder which universities worldwide produce the best coders? The answers may surprise you, at least as judged by the results of a competition posted yesterday on the HackerRank blog. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

Leading Solution Providers

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This