Adding MUSCLE to Multiscale Simulations

By Joris Borgdorff, Derek Groen, and Mariusz Mamonski

December 11, 2013

Multiscale models help understand phenomena with a wider scope or an increased level of detail. These models allow us to take the best from multiple worlds, for example by combining models with a fine-grained time or space resolution with models that capture systems over a large baseline.

Classical examples of multiscale modeling include coupling atomistic models to coarse-grained models, where several atoms are represented instead as a single fused particle, or coupling fine fluid dynamics models to coarser structural mechanics models. In both cases, we have a fairly good understanding of the single scale phenomena, but still have little knowledge of the interactions between these phenomena. As understanding these interactions is key to understanding these phenomena as a whole, many researchers are now actively developing and using multiscale modeling techniques [1].

Researchers from different disciplines recognized their common need for a general multiscale computing approach, and started the European e-Infrastructure MAPPER project in 2010. The project aimed to bring their demanding multiscale applications to HPC, in an approach that uses the commonalities in multiscale modeling for applications in biomedicine, hydrology, nanomaterials, fusion, and systems biology.

muscle5The project settled on the theoretical and components-based Multiscale Modeling and Simulation Framework [2], which defines a multiscale model as a set of coupled single scale models (see Fig. 1). This approach allows code reuse, since single scale models often already exist, and defines clear opportunities for scheduling and distributing multiscale models, since the coupling is separated from the single scale code. Single scale models (or submodels) are implemented, verified, and validated in isolation, after which their interaction is added. They interact through input and output ports, sending or receiving simple parameters there, or entire datasets or geometries. A conduit transports the data from one port to another and intermediate components transform the data, implementing so-called scale-bridging techniques.

The Multiscale Coupling Library and Environment 2 (MUSCLE 2, http://apps.man.poznan.pl/trac/muscle) was created to implement and execute multiscale models with feedback loops, which we call cyclic coupling topologies. MUSCLE is truly a domain-independent approach, as it has so far been adopted, amongst others, by the abovementioned applications in MAPPER, and run on several supercomputers and clusters in Europe, as well as the Amazon cloud infrastructure. It consists of a library,  scripted coupling and a runtime environment.

Figure 2. Layered design of MUSCLE 2, separating implementation, coupling and execution.
Figure 2. Layered design of MUSCLE 2, separating implementation, coupling and execution.

By design, submodels do their computations independently, and MUSCLE 2 allows them to be implemented in different programming languages (C, C++, Fortran, Java, Scala, Python, or MATLAB) and for them to run on multiple machines. Conduits in MUSCLE 2 use shared memory communication where possible, and TCP/IP communication otherwise.  Using TCP/IP makes communicating between different computers as transparent as running on a single host. A central simulation manager acts as a white-page service for the submodels in a simulation, but after a submodel is registered there it does decentralized message passing with other submodels to prevent possible bottlenecks. By running each submodel in a separate process or thread, MUSCLE 2 has inherent multiscale parallelism.

MUSCLE 2 separates the submodel code, which just knows about input and output ports, from coupling code, which knows which ports will be coupled. This allows users to change the coupling topology without recompiling or redeploying code. Additionally, the coupling code is independent from the resources that the simulation will be eventually run on, so the same coupling can be submitted to multiple machines or be spread out over them, even when they reside in different countries. This allows us not only to use more resources but, more importantly, to take advantage of architectures that are optimal for each of the models involved. For example, some models in a simulation may greatly benefit from GPGPUs, whereas others have large memory requirements.

Within a supercomputer, MUSCLE 2 can make direct connections between processes, but almost all supercomputers have firewalls in place that prevent direct connections between worker nodes in different supercomputers. In MUSCLE 2we resolve this by providing a TCP/IP forwarding service, the MUSCLE Transport Overlay, that runs on interactive nodes of the cluster and forwards messages between MUSCLE 2 installations on different clusters.

To optimize the speed for large messages, MUSCLE 2 has the option of using the MPWide library (http://www.github.com/djgroen/MPWide), a high-performance communication library that was used to cosmological simulations in parallelized across multiple supercomputers [3]. MUSCLE 2 processes can be run directly as a supercomputer job and have few dependencies, but require the address of the site simulation manager to connect to other processes. This can be done manually or automated via a dedicated service such as provided by the QosCosGrid software stack (http://www.qoscosgrid.org/). QosCosGrid provides middleware solutions, notably on the Polish national grid (PL-Grid), that allow users to schedule and coordinate simulations running in multiple distributed HPC resources [4]. MUSCLE 2 is open source software (LGPL version 3 license) that runs on Linux and OS X and can be freely installed without administrative privileges.

In memoriam Mariusz Mamonski (1984 – 2013)

We wish to dedicate this paper to the memory of Mariusz Mamonski, whose sudden decease came as a shock to us all. The MUSCLE 2 team would like to thank Mariusz for all his professional and personal contributions to distributed multiscale computing. His dedication to end-users, his insight in software quality and his experience with infrastructures was truly impressive, and he will be sorely missed.

Biographies:

muscle3Joris Borgdorff is a PhD candidate at the Computational Science group of the University of Amsterdam, researching the formal background of multiscale and complex systems modeling and the applied aspects of distributed multiscale computing. He received a BSc in Mathematics and in Computer Science (2006) and an MSc in Applied Computing Science (2009) from Utrecht University. He is involved in the European MAPPER and Sophocles projects.

 

muscle2Derek Groen is a post-doctoral researcher at the Centre for Computational Science at University College London and a Fellow of the Software Sustainability Institute. He has expertise in high performance and distributed computing, as well as multiscale simulation. Derek has worked on a range of applications, and modelled star clusters, cosmological dark matter structures, clay-polymer nanocomposite materials, turbulence and human bloodflow using supercomputers. He obtained his PhD in Computational Astrophysics in Amsterdam in 2010.

 

muscle1Mariusz Mamonski (1984 – 2013) received his diploma in Computer Science at the Poznan University of Technology (Laboratory of Computing Systems) in 2008. He started working at the Application Department of the Poznan Supercomputing and Networking Center in 2005. He contributed to several research EU projects, in particular: GridLab, InteliGrid, BREIN and QosCosGrid, and was involved in the national and European e-Infrastracture projects PL-Grid and MAPPER. His research primarily focussed on web services, queueing systems and parallel execution and programing environments. He was an active member of the Open Grid Forum Distributed Resource Management Application API (OGF DRMAA) working group.

Acknowledgements

We would like to thank the Bartosz Bosak and Krzysztof Kurowski from the Poznan Supercomputing and Networking Center for their support and input, and we thank Alfons G. Hoekstra from the University of Amsterdam for his feedback.

References:

[1] Groen et al., Survey of Multiscale and Multiphysics Applications and Communities, IEEE Computing in Science and Engineering, http://dx.doi.org/10.1109/MCSE.2013.47.

[2] Borgdorff et al., Foundations of distributed multiscale computing: Formalization, specification, and analysis, Journal of Parallel and Distributed Computing http://dx.doi.org/10.1016/j.jpdc.2012.12.011

[3] Groen et al., A lightweight communication library for distributed computing, accepted by the Journal of Open Research Software, http://arxiv.org/abs/1312.0910.

[4] Kravtsov et al., Grid-enabling complex system applications with QosCosGrid: An architectural perspective, Proceedings of the 2008 International Conference on Grid Computing & Applications, Las Vegas, Nevada, USA, 2008, pp. 168–174.

[5] Borgdorff et al., Distributed Multiscale Computing with MUSCLE 2, the Multiscale Coupling Library and Environment, submitted to the Journal of Computational Science, http://arxiv.org/abs/1311.5740

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

RIKEN Post-K Supercomputer Named After Japan’s Tallest Peak

May 23, 2019

May 23 -- RIKEN President Hiroshi Matsumoto announced that the successor to the K computer will be named Fugaku, another name for Mount Fuji, which is the tallest mountain peak in Japan. Supercomputer Fugaku, developed b Read more…

By Tiffany Trader

Cray’s Emerging Market & Technology Director Arti Garg Peers Around HPC/AI Corner

May 23, 2019

In her position as emerging market and technology director at Cray, Arti Garg doesn't just have a front-row seat to the future of computing, she plays an active role in making that future happen. Key to Garg's role is understanding how deep learning scientists are using state-of-the-art HPC infrastructures and figuring out how to push those limits further. Read more…

By Tiffany Trader

Combining Machine Learning and Supercomputing to Ferret out Phishing Attacks

May 23, 2019

The relentless ingenuity that drives cyber hacking is a global engine that knows no rest. Anyone with a laptop and run-of-the-mill computer smarts can buy or rent a phishing kit and start attacking – or it can be done Read more…

By Doug Black

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

For decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Who’s Driving Your Car?

Delivering a fully autonomous driving (AD) vehicle remains a key priority for both manufacturers and technology firms (“firms”). However, passenger safety is now a top-of-mind concern due in great part, to fatalities resulting from driving tests over the past years. Read more…

TACC’s Upgraded Ranch Data Storage System Debuts New Features, Exabyte Potential

May 22, 2019

There's a joke attributed to comedian Steven Wright that goes, "You can't have everything. Where would you put it?" Users of advanced computing can likely relate to this. The exponential growth of data poses a steep challenge to efforts for its reliable storage. For over 12 years, the Ranch system at the Texas Advanced Computing Center... Read more…

By Jorge Salazar, TACC

Cray’s Emerging Market & Technology Director Arti Garg Peers Around HPC/AI Corner

May 23, 2019

In her position as emerging market and technology director at Cray, Arti Garg doesn't just have a front-row seat to the future of computing, she plays an active role in making that future happen. Key to Garg's role is understanding how deep learning scientists are using state-of-the-art HPC infrastructures and figuring out how to push those limits further. Read more…

By Tiffany Trader

Combining Machine Learning and Supercomputing to Ferret out Phishing Attacks

May 23, 2019

The relentless ingenuity that drives cyber hacking is a global engine that knows no rest. Anyone with a laptop and run-of-the-mill computer smarts can buy or re Read more…

By Doug Black

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

HPE to Acquire Cray for $1.3B

May 17, 2019

Venerable supercomputer pioneer Cray Inc. will be acquired by Hewlett Packard Enterprise for $1.3 billion under a definitive agreement announced this morning. T Read more…

By Doug Black & Tiffany Trader

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

CCC Offers Draft 20-Year AI Roadmap; Seeks Comments

May 14, 2019

Artificial Intelligence in all its guises has captured much of the conversation in HPC and general computing today. The White House, DARPA, IARPA, and Departmen Read more…

By John Russell

Cascade Lake Shows Up to 84 Percent Gen-on-Gen Advantage on STAC Benchmarking

May 13, 2019

The Securities Technology Analysis Center (STAC) issued a report Friday comparing the performance of Intel's Cascade Lake processors with previous-gen Skylake u Read more…

By Tiffany Trader

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Announcing four new HPC capabilities in Google Cloud Platform

April 15, 2019

When you’re running compute-bound or memory-bound applications for high performance computing or large, data-dependent machine learning training workloads on Read more…

By Wyatt Gorman, HPC Specialist, Google Cloud; Brad Calder, VP of Engineering, Google Cloud; Bart Sano, VP of Platforms, Google Cloud

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This