Adding MUSCLE to Multiscale Simulations

By Joris Borgdorff, Derek Groen, and Mariusz Mamonski

December 11, 2013

Multiscale models help understand phenomena with a wider scope or an increased level of detail. These models allow us to take the best from multiple worlds, for example by combining models with a fine-grained time or space resolution with models that capture systems over a large baseline.

Classical examples of multiscale modeling include coupling atomistic models to coarse-grained models, where several atoms are represented instead as a single fused particle, or coupling fine fluid dynamics models to coarser structural mechanics models. In both cases, we have a fairly good understanding of the single scale phenomena, but still have little knowledge of the interactions between these phenomena. As understanding these interactions is key to understanding these phenomena as a whole, many researchers are now actively developing and using multiscale modeling techniques [1].

Researchers from different disciplines recognized their common need for a general multiscale computing approach, and started the European e-Infrastructure MAPPER project in 2010. The project aimed to bring their demanding multiscale applications to HPC, in an approach that uses the commonalities in multiscale modeling for applications in biomedicine, hydrology, nanomaterials, fusion, and systems biology.

muscle5The project settled on the theoretical and components-based Multiscale Modeling and Simulation Framework [2], which defines a multiscale model as a set of coupled single scale models (see Fig. 1). This approach allows code reuse, since single scale models often already exist, and defines clear opportunities for scheduling and distributing multiscale models, since the coupling is separated from the single scale code. Single scale models (or submodels) are implemented, verified, and validated in isolation, after which their interaction is added. They interact through input and output ports, sending or receiving simple parameters there, or entire datasets or geometries. A conduit transports the data from one port to another and intermediate components transform the data, implementing so-called scale-bridging techniques.

The Multiscale Coupling Library and Environment 2 (MUSCLE 2, http://apps.man.poznan.pl/trac/muscle) was created to implement and execute multiscale models with feedback loops, which we call cyclic coupling topologies. MUSCLE is truly a domain-independent approach, as it has so far been adopted, amongst others, by the abovementioned applications in MAPPER, and run on several supercomputers and clusters in Europe, as well as the Amazon cloud infrastructure. It consists of a library,  scripted coupling and a runtime environment.

Figure 2. Layered design of MUSCLE 2, separating implementation, coupling and execution.
Figure 2. Layered design of MUSCLE 2, separating implementation, coupling and execution.

By design, submodels do their computations independently, and MUSCLE 2 allows them to be implemented in different programming languages (C, C++, Fortran, Java, Scala, Python, or MATLAB) and for them to run on multiple machines. Conduits in MUSCLE 2 use shared memory communication where possible, and TCP/IP communication otherwise.  Using TCP/IP makes communicating between different computers as transparent as running on a single host. A central simulation manager acts as a white-page service for the submodels in a simulation, but after a submodel is registered there it does decentralized message passing with other submodels to prevent possible bottlenecks. By running each submodel in a separate process or thread, MUSCLE 2 has inherent multiscale parallelism.

MUSCLE 2 separates the submodel code, which just knows about input and output ports, from coupling code, which knows which ports will be coupled. This allows users to change the coupling topology without recompiling or redeploying code. Additionally, the coupling code is independent from the resources that the simulation will be eventually run on, so the same coupling can be submitted to multiple machines or be spread out over them, even when they reside in different countries. This allows us not only to use more resources but, more importantly, to take advantage of architectures that are optimal for each of the models involved. For example, some models in a simulation may greatly benefit from GPGPUs, whereas others have large memory requirements.

Within a supercomputer, MUSCLE 2 can make direct connections between processes, but almost all supercomputers have firewalls in place that prevent direct connections between worker nodes in different supercomputers. In MUSCLE 2we resolve this by providing a TCP/IP forwarding service, the MUSCLE Transport Overlay, that runs on interactive nodes of the cluster and forwards messages between MUSCLE 2 installations on different clusters.

To optimize the speed for large messages, MUSCLE 2 has the option of using the MPWide library (http://www.github.com/djgroen/MPWide), a high-performance communication library that was used to cosmological simulations in parallelized across multiple supercomputers [3]. MUSCLE 2 processes can be run directly as a supercomputer job and have few dependencies, but require the address of the site simulation manager to connect to other processes. This can be done manually or automated via a dedicated service such as provided by the QosCosGrid software stack (http://www.qoscosgrid.org/). QosCosGrid provides middleware solutions, notably on the Polish national grid (PL-Grid), that allow users to schedule and coordinate simulations running in multiple distributed HPC resources [4]. MUSCLE 2 is open source software (LGPL version 3 license) that runs on Linux and OS X and can be freely installed without administrative privileges.

In memoriam Mariusz Mamonski (1984 – 2013)

We wish to dedicate this paper to the memory of Mariusz Mamonski, whose sudden decease came as a shock to us all. The MUSCLE 2 team would like to thank Mariusz for all his professional and personal contributions to distributed multiscale computing. His dedication to end-users, his insight in software quality and his experience with infrastructures was truly impressive, and he will be sorely missed.

Biographies:

muscle3Joris Borgdorff is a PhD candidate at the Computational Science group of the University of Amsterdam, researching the formal background of multiscale and complex systems modeling and the applied aspects of distributed multiscale computing. He received a BSc in Mathematics and in Computer Science (2006) and an MSc in Applied Computing Science (2009) from Utrecht University. He is involved in the European MAPPER and Sophocles projects.

 

muscle2Derek Groen is a post-doctoral researcher at the Centre for Computational Science at University College London and a Fellow of the Software Sustainability Institute. He has expertise in high performance and distributed computing, as well as multiscale simulation. Derek has worked on a range of applications, and modelled star clusters, cosmological dark matter structures, clay-polymer nanocomposite materials, turbulence and human bloodflow using supercomputers. He obtained his PhD in Computational Astrophysics in Amsterdam in 2010.

 

muscle1Mariusz Mamonski (1984 – 2013) received his diploma in Computer Science at the Poznan University of Technology (Laboratory of Computing Systems) in 2008. He started working at the Application Department of the Poznan Supercomputing and Networking Center in 2005. He contributed to several research EU projects, in particular: GridLab, InteliGrid, BREIN and QosCosGrid, and was involved in the national and European e-Infrastracture projects PL-Grid and MAPPER. His research primarily focussed on web services, queueing systems and parallel execution and programing environments. He was an active member of the Open Grid Forum Distributed Resource Management Application API (OGF DRMAA) working group.

Acknowledgements

We would like to thank the Bartosz Bosak and Krzysztof Kurowski from the Poznan Supercomputing and Networking Center for their support and input, and we thank Alfons G. Hoekstra from the University of Amsterdam for his feedback.

References:

[1] Groen et al., Survey of Multiscale and Multiphysics Applications and Communities, IEEE Computing in Science and Engineering, http://dx.doi.org/10.1109/MCSE.2013.47.

[2] Borgdorff et al., Foundations of distributed multiscale computing: Formalization, specification, and analysis, Journal of Parallel and Distributed Computing http://dx.doi.org/10.1016/j.jpdc.2012.12.011

[3] Groen et al., A lightweight communication library for distributed computing, accepted by the Journal of Open Research Software, http://arxiv.org/abs/1312.0910.

[4] Kravtsov et al., Grid-enabling complex system applications with QosCosGrid: An architectural perspective, Proceedings of the 2008 International Conference on Grid Computing & Applications, Las Vegas, Nevada, USA, 2008, pp. 168–174.

[5] Borgdorff et al., Distributed Multiscale Computing with MUSCLE 2, the Multiscale Coupling Library and Environment, submitted to the Journal of Computational Science, http://arxiv.org/abs/1311.5740

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

TACC Helps ROSIE Bioscience Gateway Expand its Impact

April 26, 2017

Biomolecule structure prediction has long been challenging not least because the relevant software and workflows often require high-end HPC systems that many bioscience researchers lack easy access to. Read more…

By John Russell

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

IBM, Nvidia, Stone Ridge Claim Gas & Oil Simulation Record

April 25, 2017

IBM, Nvidia, and Stone Ridge Technology today reported setting the performance record for a “billion cell” oil and gas reservoir simulation. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Remote Visualization Optimizing Life Sciences Operations and Care Delivery

As patients continually demand a better quality of care and increasingly complex workloads challenge healthcare organizations to innovate, investing in the right technologies is key to ensuring growth and success. Read more…

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This