Tackling the Power and Energy Wall for Future HPC Systems

By Performance and Architecture Lab (PAL) at PNNL

December 17, 2013

A Perspective from the Paci fic Northwest National Laboratory*

As the cost of powering a supercomputer or a datacenter increases, next generation exascale systems need to be considerably more power- and energy-efficient than current supercomputers to be of practical use. Constrained power consumption (20-25MW for the entire system is the target that the DOE Office of Science gave to the HPC community) is one of the limiting factors on the road to achieve sustainable performance at exascale. In fact, the power challenge is so fundamental that other challenges can be reduced to power limitations. For example, operating at near-threshold voltage (NTV) in order to perform computation within a given power budget may considerably increase the soft-error rate (resilience challenge). Unlike petascale systems, where the primary concern was performance, exascale systems need to climb the power and energy walls in order to deliver sustainable exaflops performance. At the Pacifi c Northwest Laboratory (PNNL) we are exploring holistically energy and power efficiency aspects at all levels of granularity, from processor architecture to system integration. We are also tackling the power and energy problems from several angles, from system software and programming models to performance and power modeling of scientifi c applications and extreme scale systems.

PNNL Research Areas Fig1

PNNL’s computing facilities, such as its Institutional HPC system (PIC), and an earlier testbed, the Energy Smart Data Center (ESDC), provide research platforms to address what-if questions related to the use of suitable datacenter metrics that are meaningful to the HPC community. The measurement harness of the ESDC entailed over thousand out-of-band sensors comprising power, flow, pressure and temperature at the machine room and at the IT equipment. PIC is another example that substantiates our integrated datacenter vision to drive energy efficiency research. This system is housed in a geothermally cooled datacenter with rear-door heat exchangers. The facility is instrumented at the machine room and system level, providing insight into macro-level machine room power efficiencies and micro-level energy efficiencies at the server and mother-board component levels.

Despite its importance for future exascale systems, power is still not considered a first-class citizen, which complicates the development of power-aware software algorithms. In PNNL’s vision, power should be considered a resource, just as processing elements or memory modules, and should be managed as such by the system software. System software must be able to precisely measure (in-band) power resource utilization, i.e., how much power is consumed by each system component at any given time. More importantly, the system software should adapt the application to the contingent execution environment, e.g, by allocating sustained power to threads on the application’s critical path or promptly moving idle cores to low-power states. The design and development of such self-aware/self-adaptive system software is an active research area at PNNL. We recently analyzed the power characteristics of scientifi c applications from the DOE ASCR’s Exascale Co-Design Center and, in general, in the HPC community to identify opportunities for power savings. Given the lack of in-band, fine-grained (both in space and time) power sensors, we develop an accurate per-core proxy power sensor model that estimates the active power of each core by inspecting the cores’ activity. We use statistical regression techniques to formulate closed-form expressions for the estimated core and system power consumption. These techniques enable us to develop power-aware algorithms and characterize applications running even on non-instrumented compute nodes. Our experiments show that processes in the same application may not have the same power profi le and/or may alternate high-power with low-power phases independently from one another. These alternating behaviors raise opportunities for shifting power towards computing-demanding processes, hereby saving power without diminishing performance.

There is a strong agreement among researchers on the increasing cost of data movement with respect to computation. This ratio will further increase in future systems that will approach NTV operation levels: the energy consumption of a double precision register-to-register floating point operation is expected to decrease by 10x by 2018. The energy cost of moving data from memory to processor is not expected to follow the same trend, hence the relative energy cost of data movement with respect to performing a register-to-register operation will increase (energy wall — analogous to the memory wall). In a recent study we modeled the energy cost of moving data across the memory hierarchy of current systems and analyzed the energy cost of data movement for scientifi c applications. In this study, we answer several important questions such as what is the amount of energy spent in data movement with respect to the total energy consumption of an application or what is the dominant component of data movement energy for current and future parallel applications. Our results show that the energy cost of data movement impact di fferently on each application, ranging from 18% to 40%. This percentage might increase in the future, as the energy cost of performing computation decreases. To avoid such scenario, new technologies, such as Processing-In- Memory, Non-Volatile RAM and 3D-stacked memory, become essential for the development of sustainable exascale computing. We also noticed that the energy spent in resolving data dependency, speculation and out-of-order scheduling of instructions accounts for a considerable part of the total dynamic energy, between 22% and 35%. This cost can be reduced with simpler processor core designs that are more energy efficient.

Given the increasing complexity of future exascale applications and systems, designers need new sophisticated tools to navigate the design space. These tools must capture a range of metrics that are of interest to system and application designers, including performance and power consumption. PNNL has historically developed application-specific performance tools that model the evolution of parallel applications. While these models have shown themselves to be powerful tools for understanding the mapping of applications to complex system architectures, the metrics of interest are expanding to include power consumption as well. To this end, PNNL researchers have developed a methodology for the modeling of performance and power in concert that builds upon its experience of co-designing systems and applications. This modeling capability has been developed along three axes. The first is the deployment of a workload-specific quantitative power modeling capability. Such power models accurately capture workload phases, their impact on power consumption, and how they are impacted by system architecture and con figuration (e.g., processor clock speed). The second axis is the integration of the performance and power modeling methodologies. To this end, it is critical that both modeling methods operated at the same conceptual level. In other words, application phases or components that are captured in one model must be also reflected in the other so that trade-o ffs between power and performance may be captured and quantifi ed. The last axis of development involves integrating these models with our self-aware/self-adaptive software system that will provide mechanisms for dynamically optimizing ongoing application execution. We have developed the concept of Energy Templates, which are a mechanism for passing application-specifi c behavioral information to the underlying runtime layers. Energy Templates capture per-core idle/busy states, as well as the amount of time each core expects to remain in each state, allowing runtime software to determine appropriate opportunities to exercise power saving features provided by the hardware/software platform (e.g., Dynamic Voltage and Frequency Scaling — DVFS) without negatively impacting performance. By proactively using application-speci fic information, Energy Templates are able to exploit energy savings opportunities that are not available to mechanisms that are not application-aware.

The research at PNNL is also being applied within the new DARPA program in the Power Efficiency Revolution of Embedded Technologies (PERFECT). We see that technologies being developed both for high performance computing and embedded systems are fundamentally the same. These may well converge in the future, and thus common tools and techniques can be developed that encompass both. Within PERFECT PNNL researchers are developing a coherent framework that is able to both empirically analyze current systems and predictively assess future technologies.

Finally, PNNL’s research extends to the datacenters: this research direction is approached in an integrated fashion where IT power consumption for applications of interest to the DOE is correlated with the power consumption of the supporting infrastructure. An integrated approach allows the researcher to formulate what-if questions in an HPC setting such as the applicability and efficacy of novel cooling solutions (e.g., spray cooling) at the heat source vs. a traditional global cooling solution.

Overall, PNNL is actively participating in (and in many cases leading) several DOE and DARPA projects, as well as internal projects, that aim at understanding the impact of the power and energy walls on exascale systems and deploying power- and energy-aware solutions at all levels of the system and application design and optimization. The insights gained throughout these efforts and projects will contribute towards the design of power- and energy-efficient exascale systems.

*The following PNNL researchers contributed to this piece: Adolfy Hoisie, Kevin Barker, Roberto Gioiosa, Darren J. Kerbyson, Gokcen Kestor, Joseph Manzano, Andres Marquez, Shuaiwen Song, Nathan Tallent, Antonino Tumeo, Abhinav Vishnu

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Do Cryptocurrencies Have a Part to Play in HPC?

February 22, 2018

It’s easy to be distracted by news from the US, China, and now the EU on the state of various exascale projects, but behind the vinyl-wrapped cabinets and well-groomed sales execs are an army of Excel-wielding PMO and Read more…

By Chris Downing

HOKUSAI’s BigWaterfall Cluster Extends RIKEN’s Supercomputing Performance

February 21, 2018

RIKEN, Japan’s largest comprehensive research institution, recently expanded the capacity and capabilities of its HOKUSAI supercomputer, a key resource managed by the institution’s Advanced Center for Computing and C Read more…

By Ken Strandberg

Neural Networking Shows Promise in Earthquake Monitoring

February 21, 2018

A team of Harvard University and MIT researchers report their new neural networking method for monitoring earthquakes is more accurate and orders of magnitude faster than traditional approaches. Read more…

By John Russell

HPE Extreme Performance Solutions

Experience Memory & Storage Solutions that will Transform Your Data Performance

High performance computing (HPC) has revolutionized the way we harness insight, leading to a dramatic increase in both the size and complexity of HPC systems. Read more…

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HPE to provide the DoD High Performance Computing Modernizatio Read more…

By Tiffany Trader

HOKUSAI’s BigWaterfall Cluster Extends RIKEN’s Supercomputing Performance

February 21, 2018

RIKEN, Japan’s largest comprehensive research institution, recently expanded the capacity and capabilities of its HOKUSAI supercomputer, a key resource manage Read more…

By Ken Strandberg

Neural Networking Shows Promise in Earthquake Monitoring

February 21, 2018

A team of Harvard University and MIT researchers report their new neural networking method for monitoring earthquakes is more accurate and orders of magnitude faster than traditional approaches. Read more…

By John Russell

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penal Read more…

By Pete Beckman

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

The Food Industry’s Next Journey — from Mars to Exascale

February 12, 2018

Global food producer and one of the world's leading chocolate companies Mars Inc. has a unique perspective on the impact that exascale computing will have on the food industry. Read more…

By Scott Gibson, Oak Ridge National Laboratory

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

V100 Good but not Great on Select Deep Learning Aps, Says Xcelerit

November 27, 2017

Wringing optimum performance from hardware to accelerate deep learning applications is a challenge that often depends on the specific application in use. A benc Read more…

By John Russell

SC17: Singularity Preps Version 3.0, Nears 1M Containers Served Daily

November 1, 2017

Just a few months ago about half a million jobs were being run daily using Singularity containers, the LBNL-founded container platform intended for HPC. That wa Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This