Tackling the Power and Energy Wall for Future HPC Systems

By Performance and Architecture Lab (PAL) at PNNL

December 17, 2013

A Perspective from the Paci fic Northwest National Laboratory*

As the cost of powering a supercomputer or a datacenter increases, next generation exascale systems need to be considerably more power- and energy-efficient than current supercomputers to be of practical use. Constrained power consumption (20-25MW for the entire system is the target that the DOE Office of Science gave to the HPC community) is one of the limiting factors on the road to achieve sustainable performance at exascale. In fact, the power challenge is so fundamental that other challenges can be reduced to power limitations. For example, operating at near-threshold voltage (NTV) in order to perform computation within a given power budget may considerably increase the soft-error rate (resilience challenge). Unlike petascale systems, where the primary concern was performance, exascale systems need to climb the power and energy walls in order to deliver sustainable exaflops performance. At the Pacifi c Northwest Laboratory (PNNL) we are exploring holistically energy and power efficiency aspects at all levels of granularity, from processor architecture to system integration. We are also tackling the power and energy problems from several angles, from system software and programming models to performance and power modeling of scientifi c applications and extreme scale systems.

PNNL Research Areas Fig1

PNNL’s computing facilities, such as its Institutional HPC system (PIC), and an earlier testbed, the Energy Smart Data Center (ESDC), provide research platforms to address what-if questions related to the use of suitable datacenter metrics that are meaningful to the HPC community. The measurement harness of the ESDC entailed over thousand out-of-band sensors comprising power, flow, pressure and temperature at the machine room and at the IT equipment. PIC is another example that substantiates our integrated datacenter vision to drive energy efficiency research. This system is housed in a geothermally cooled datacenter with rear-door heat exchangers. The facility is instrumented at the machine room and system level, providing insight into macro-level machine room power efficiencies and micro-level energy efficiencies at the server and mother-board component levels.

Despite its importance for future exascale systems, power is still not considered a first-class citizen, which complicates the development of power-aware software algorithms. In PNNL’s vision, power should be considered a resource, just as processing elements or memory modules, and should be managed as such by the system software. System software must be able to precisely measure (in-band) power resource utilization, i.e., how much power is consumed by each system component at any given time. More importantly, the system software should adapt the application to the contingent execution environment, e.g, by allocating sustained power to threads on the application’s critical path or promptly moving idle cores to low-power states. The design and development of such self-aware/self-adaptive system software is an active research area at PNNL. We recently analyzed the power characteristics of scientifi c applications from the DOE ASCR’s Exascale Co-Design Center and, in general, in the HPC community to identify opportunities for power savings. Given the lack of in-band, fine-grained (both in space and time) power sensors, we develop an accurate per-core proxy power sensor model that estimates the active power of each core by inspecting the cores’ activity. We use statistical regression techniques to formulate closed-form expressions for the estimated core and system power consumption. These techniques enable us to develop power-aware algorithms and characterize applications running even on non-instrumented compute nodes. Our experiments show that processes in the same application may not have the same power profi le and/or may alternate high-power with low-power phases independently from one another. These alternating behaviors raise opportunities for shifting power towards computing-demanding processes, hereby saving power without diminishing performance.

There is a strong agreement among researchers on the increasing cost of data movement with respect to computation. This ratio will further increase in future systems that will approach NTV operation levels: the energy consumption of a double precision register-to-register floating point operation is expected to decrease by 10x by 2018. The energy cost of moving data from memory to processor is not expected to follow the same trend, hence the relative energy cost of data movement with respect to performing a register-to-register operation will increase (energy wall — analogous to the memory wall). In a recent study we modeled the energy cost of moving data across the memory hierarchy of current systems and analyzed the energy cost of data movement for scientifi c applications. In this study, we answer several important questions such as what is the amount of energy spent in data movement with respect to the total energy consumption of an application or what is the dominant component of data movement energy for current and future parallel applications. Our results show that the energy cost of data movement impact di fferently on each application, ranging from 18% to 40%. This percentage might increase in the future, as the energy cost of performing computation decreases. To avoid such scenario, new technologies, such as Processing-In- Memory, Non-Volatile RAM and 3D-stacked memory, become essential for the development of sustainable exascale computing. We also noticed that the energy spent in resolving data dependency, speculation and out-of-order scheduling of instructions accounts for a considerable part of the total dynamic energy, between 22% and 35%. This cost can be reduced with simpler processor core designs that are more energy efficient.

Given the increasing complexity of future exascale applications and systems, designers need new sophisticated tools to navigate the design space. These tools must capture a range of metrics that are of interest to system and application designers, including performance and power consumption. PNNL has historically developed application-specific performance tools that model the evolution of parallel applications. While these models have shown themselves to be powerful tools for understanding the mapping of applications to complex system architectures, the metrics of interest are expanding to include power consumption as well. To this end, PNNL researchers have developed a methodology for the modeling of performance and power in concert that builds upon its experience of co-designing systems and applications. This modeling capability has been developed along three axes. The first is the deployment of a workload-specific quantitative power modeling capability. Such power models accurately capture workload phases, their impact on power consumption, and how they are impacted by system architecture and con figuration (e.g., processor clock speed). The second axis is the integration of the performance and power modeling methodologies. To this end, it is critical that both modeling methods operated at the same conceptual level. In other words, application phases or components that are captured in one model must be also reflected in the other so that trade-o ffs between power and performance may be captured and quantifi ed. The last axis of development involves integrating these models with our self-aware/self-adaptive software system that will provide mechanisms for dynamically optimizing ongoing application execution. We have developed the concept of Energy Templates, which are a mechanism for passing application-specifi c behavioral information to the underlying runtime layers. Energy Templates capture per-core idle/busy states, as well as the amount of time each core expects to remain in each state, allowing runtime software to determine appropriate opportunities to exercise power saving features provided by the hardware/software platform (e.g., Dynamic Voltage and Frequency Scaling — DVFS) without negatively impacting performance. By proactively using application-speci fic information, Energy Templates are able to exploit energy savings opportunities that are not available to mechanisms that are not application-aware.

The research at PNNL is also being applied within the new DARPA program in the Power Efficiency Revolution of Embedded Technologies (PERFECT). We see that technologies being developed both for high performance computing and embedded systems are fundamentally the same. These may well converge in the future, and thus common tools and techniques can be developed that encompass both. Within PERFECT PNNL researchers are developing a coherent framework that is able to both empirically analyze current systems and predictively assess future technologies.

Finally, PNNL’s research extends to the datacenters: this research direction is approached in an integrated fashion where IT power consumption for applications of interest to the DOE is correlated with the power consumption of the supporting infrastructure. An integrated approach allows the researcher to formulate what-if questions in an HPC setting such as the applicability and efficacy of novel cooling solutions (e.g., spray cooling) at the heat source vs. a traditional global cooling solution.

Overall, PNNL is actively participating in (and in many cases leading) several DOE and DARPA projects, as well as internal projects, that aim at understanding the impact of the power and energy walls on exascale systems and deploying power- and energy-aware solutions at all levels of the system and application design and optimization. The insights gained throughout these efforts and projects will contribute towards the design of power- and energy-efficient exascale systems.

*The following PNNL researchers contributed to this piece: Adolfy Hoisie, Kevin Barker, Roberto Gioiosa, Darren J. Kerbyson, Gokcen Kestor, Joseph Manzano, Andres Marquez, Shuaiwen Song, Nathan Tallent, Antonino Tumeo, Abhinav Vishnu

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

Weekly Twitter Roundup (Feb. 23, 2017)

February 23, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

HPC Financial Update (Feb. 2017)

February 22, 2017

In this recurring feature, we’ll provide you with financial highlights from companies in the HPC industry. Check back in regularly for an updated list with the most pertinent fiscal information. Read more…

By Thomas Ayres

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

Rethinking HPC Platforms for ‘Second Gen’ Applications

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. Read more…

By John Russell

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Leading Solution Providers

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

  • arrow
  • Click Here for More Headlines
  • arrow
Share This