Tackling the Power and Energy Wall for Future HPC Systems

By Performance and Architecture Lab (PAL) at PNNL

December 17, 2013

A Perspective from the Paci fic Northwest National Laboratory*

As the cost of powering a supercomputer or a datacenter increases, next generation exascale systems need to be considerably more power- and energy-efficient than current supercomputers to be of practical use. Constrained power consumption (20-25MW for the entire system is the target that the DOE Office of Science gave to the HPC community) is one of the limiting factors on the road to achieve sustainable performance at exascale. In fact, the power challenge is so fundamental that other challenges can be reduced to power limitations. For example, operating at near-threshold voltage (NTV) in order to perform computation within a given power budget may considerably increase the soft-error rate (resilience challenge). Unlike petascale systems, where the primary concern was performance, exascale systems need to climb the power and energy walls in order to deliver sustainable exaflops performance. At the Pacifi c Northwest Laboratory (PNNL) we are exploring holistically energy and power efficiency aspects at all levels of granularity, from processor architecture to system integration. We are also tackling the power and energy problems from several angles, from system software and programming models to performance and power modeling of scientifi c applications and extreme scale systems.

PNNL Research Areas Fig1

PNNL’s computing facilities, such as its Institutional HPC system (PIC), and an earlier testbed, the Energy Smart Data Center (ESDC), provide research platforms to address what-if questions related to the use of suitable datacenter metrics that are meaningful to the HPC community. The measurement harness of the ESDC entailed over thousand out-of-band sensors comprising power, flow, pressure and temperature at the machine room and at the IT equipment. PIC is another example that substantiates our integrated datacenter vision to drive energy efficiency research. This system is housed in a geothermally cooled datacenter with rear-door heat exchangers. The facility is instrumented at the machine room and system level, providing insight into macro-level machine room power efficiencies and micro-level energy efficiencies at the server and mother-board component levels.

Despite its importance for future exascale systems, power is still not considered a first-class citizen, which complicates the development of power-aware software algorithms. In PNNL’s vision, power should be considered a resource, just as processing elements or memory modules, and should be managed as such by the system software. System software must be able to precisely measure (in-band) power resource utilization, i.e., how much power is consumed by each system component at any given time. More importantly, the system software should adapt the application to the contingent execution environment, e.g, by allocating sustained power to threads on the application’s critical path or promptly moving idle cores to low-power states. The design and development of such self-aware/self-adaptive system software is an active research area at PNNL. We recently analyzed the power characteristics of scientifi c applications from the DOE ASCR’s Exascale Co-Design Center and, in general, in the HPC community to identify opportunities for power savings. Given the lack of in-band, fine-grained (both in space and time) power sensors, we develop an accurate per-core proxy power sensor model that estimates the active power of each core by inspecting the cores’ activity. We use statistical regression techniques to formulate closed-form expressions for the estimated core and system power consumption. These techniques enable us to develop power-aware algorithms and characterize applications running even on non-instrumented compute nodes. Our experiments show that processes in the same application may not have the same power profi le and/or may alternate high-power with low-power phases independently from one another. These alternating behaviors raise opportunities for shifting power towards computing-demanding processes, hereby saving power without diminishing performance.

There is a strong agreement among researchers on the increasing cost of data movement with respect to computation. This ratio will further increase in future systems that will approach NTV operation levels: the energy consumption of a double precision register-to-register floating point operation is expected to decrease by 10x by 2018. The energy cost of moving data from memory to processor is not expected to follow the same trend, hence the relative energy cost of data movement with respect to performing a register-to-register operation will increase (energy wall — analogous to the memory wall). In a recent study we modeled the energy cost of moving data across the memory hierarchy of current systems and analyzed the energy cost of data movement for scientifi c applications. In this study, we answer several important questions such as what is the amount of energy spent in data movement with respect to the total energy consumption of an application or what is the dominant component of data movement energy for current and future parallel applications. Our results show that the energy cost of data movement impact di fferently on each application, ranging from 18% to 40%. This percentage might increase in the future, as the energy cost of performing computation decreases. To avoid such scenario, new technologies, such as Processing-In- Memory, Non-Volatile RAM and 3D-stacked memory, become essential for the development of sustainable exascale computing. We also noticed that the energy spent in resolving data dependency, speculation and out-of-order scheduling of instructions accounts for a considerable part of the total dynamic energy, between 22% and 35%. This cost can be reduced with simpler processor core designs that are more energy efficient.

Given the increasing complexity of future exascale applications and systems, designers need new sophisticated tools to navigate the design space. These tools must capture a range of metrics that are of interest to system and application designers, including performance and power consumption. PNNL has historically developed application-specific performance tools that model the evolution of parallel applications. While these models have shown themselves to be powerful tools for understanding the mapping of applications to complex system architectures, the metrics of interest are expanding to include power consumption as well. To this end, PNNL researchers have developed a methodology for the modeling of performance and power in concert that builds upon its experience of co-designing systems and applications. This modeling capability has been developed along three axes. The first is the deployment of a workload-specific quantitative power modeling capability. Such power models accurately capture workload phases, their impact on power consumption, and how they are impacted by system architecture and con figuration (e.g., processor clock speed). The second axis is the integration of the performance and power modeling methodologies. To this end, it is critical that both modeling methods operated at the same conceptual level. In other words, application phases or components that are captured in one model must be also reflected in the other so that trade-o ffs between power and performance may be captured and quantifi ed. The last axis of development involves integrating these models with our self-aware/self-adaptive software system that will provide mechanisms for dynamically optimizing ongoing application execution. We have developed the concept of Energy Templates, which are a mechanism for passing application-specifi c behavioral information to the underlying runtime layers. Energy Templates capture per-core idle/busy states, as well as the amount of time each core expects to remain in each state, allowing runtime software to determine appropriate opportunities to exercise power saving features provided by the hardware/software platform (e.g., Dynamic Voltage and Frequency Scaling — DVFS) without negatively impacting performance. By proactively using application-speci fic information, Energy Templates are able to exploit energy savings opportunities that are not available to mechanisms that are not application-aware.

The research at PNNL is also being applied within the new DARPA program in the Power Efficiency Revolution of Embedded Technologies (PERFECT). We see that technologies being developed both for high performance computing and embedded systems are fundamentally the same. These may well converge in the future, and thus common tools and techniques can be developed that encompass both. Within PERFECT PNNL researchers are developing a coherent framework that is able to both empirically analyze current systems and predictively assess future technologies.

Finally, PNNL’s research extends to the datacenters: this research direction is approached in an integrated fashion where IT power consumption for applications of interest to the DOE is correlated with the power consumption of the supporting infrastructure. An integrated approach allows the researcher to formulate what-if questions in an HPC setting such as the applicability and efficacy of novel cooling solutions (e.g., spray cooling) at the heat source vs. a traditional global cooling solution.

Overall, PNNL is actively participating in (and in many cases leading) several DOE and DARPA projects, as well as internal projects, that aim at understanding the impact of the power and energy walls on exascale systems and deploying power- and energy-aware solutions at all levels of the system and application design and optimization. The insights gained throughout these efforts and projects will contribute towards the design of power- and energy-efficient exascale systems.

*The following PNNL researchers contributed to this piece: Adolfy Hoisie, Kevin Barker, Roberto Gioiosa, Darren J. Kerbyson, Gokcen Kestor, Joseph Manzano, Andres Marquez, Shuaiwen Song, Nathan Tallent, Antonino Tumeo, Abhinav Vishnu

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Geospatial Data Research Leverages GPUs

August 17, 2017

MapD Technologies, the GPU-accelerated database specialist, said it is working with university researchers on leveraging graphics processors to advance geospatial analytics. The San Francisco-based company is collabor Read more…

By George Leopold

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Centers (IPCCs) has resulted in a new Big Data Center (BDC) that Read more…

By Linda Barney

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last week the cloud giant released deeplearn.js as part of that in Read more…

By John Russell

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Spoiler Alert: Glimpse Next Week’s Solar Eclipse Via Simulation from TACC, SDSC, and NASA

August 17, 2017

Can’t wait to see next week’s solar eclipse? You can at least catch glimpses of what scientists expect it will look like. A team from Predictive Science Inc. (PSI), based in San Diego, working with Stampede2 at the Read more…

By John Russell

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Leading Solution Providers

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This