HPC’s Role in Defining Music’s Creation

By Antonis Karalis

December 23, 2013

“I remember I had this little computer with 16K of memory, and everyone was astonished! What was I going to do with all this memory!” Hans Zimmer around 1983.

Music and technology have been walking side by side for millenniums. Musical instruments have been following the advancements in technology. They evolved with mechanical and acoustics advancements, followed by advancements in electronics, and finally, they now transition into virtual reality, based on powerful code and efficient computational resources. History taught us that different musical instruments gave us different sound palettes and eventually different genres of music. Mastering new technologies has always helped us to develop new compositional styles, and enhance production approaches and sonics.

There are computer technologies that, as they go from one generation to the next, improve by an average factor of 2. With high performance computing and supercomputers, these improvements can actually be a factor of 10, or more. In a classic supercomputing style let’s look for things that will substantially change the way people perform their audio and music work and eventually how the audience enjoy their products.

Music and Technology – An Ancient Bond

Around the 5th century BC ancient Greeks created the Chorus, a homogeneous, non- individualized group of performers who communicated with the audience usually in song form. The Chorus originally consisted of fifty members. Tragedians, such as Sophocles and Euripides, changed this number through various experimentations. At the same time, on their quest to optimize the audience experience, the ancient architects built venues with custom designed acoustics. During the 18th Century, the chamber orchestra was found, also consisting of fifty musicians. Later, the full symphonic orchestra came along with about 100 musicians facilitated in custom-acoustic auditoriums that defined the sound of the experience. Music, orchestration and acoustics were always treated as one and there is a good reason for this.

The symphonic orchestra is truly a piece of technology: Every instrument is a different technological wonder and concert halls around the world are subjects of tremendous acoustic research. However, the most important element of an orchestra is the conductor. The conductor acts as the central piece of a very low message-passing latency and high-bandwidth fabric. The conductor is directing the musical performance in real time. This system architecture is the reason we have “Classical Music”. It became a reality based on organic nodes (human players), acoustic and physics laws and predetermined music written by the composer. The only limitations of this very advanced form of expression are that the music is already written by the composer and the acoustics are also more or less predetermined. To put that in perspective, in Jazz, the music can change in real time (improvisation) but the amount of people interacting in real time is greatly reduced.

The Time Machine

During the last 40 years, with the advancement of supercomputers and high-performance computing, we realized that we can scientifically create virtual environments, in which we can define specific questions and get answers. The better the questions are formed, the more defined the answers will be. This is what supercomputers have allowed us to do for many decades now and in many industries. They are like time machines. They allow us to understand the past and create the future.

But what is the ultimate answer to Music? Maybe we can discover this by moving backwards, and this is the main reason for this historic introduction to music technology. If we take one of the highest forms of human collaboration and expression, the symphonic orchestra and classical music, and we investigate those forms of expressions by a modern prism, we might get the answers we are looking for.

What are the ingredients of the modern hybrid recipe of orchestral music? Hollywood is the best place to look as scoring movies is the modern way of creating future classics.

Creating the HPC384 Spec.

I will use another Hans Zimmer quote here: “Music is organized chaos! ….but not necessarily in a bad way, as organized chaos can sound pretty good!” Composers might be inherently good in organizing chaos.

For the past 17 years, programmers from all around the world have built virtual instruments and effects based on software interfaces like VST, which runs seamlessly over an x86 microprocessor architecture. Among the high-performance computing systems, HPC clusters provide an efficient performance compute solution based on industry-standard hardware connected by a high-speed network.

Using HPC we can work with advanced physics to model plate reverbs, create evolving non-linear auditorium acoustics and emulate multi-microphone positions that will give sound endless possibilities. It is no longer necessary to work with oversampled peak detection in order to estimate the peak samples on a signal. We have overcome those barriers of conventional underpowered discrete-time systems. We process the actual audio and not ‘the estimation of it’ without any more fighting with conventional CPU or DSP constraints.  There is no way we can overload an HPC music production system when we work with 88.2 kHz, 96 kHz, 192 kHz or even 384 kHz. Moreover, HPC allows us to have different sound qualities in the same project so we can push the engines hard when we want to emulate analog synthesizers, luscious reverbs or accurate solid-state and thermionic valve circuitry that needs advanced resolution at a microsecond’s time domain.

At this critical juncture of entertainment evolution, with 3D & HDR, IMAX Cinema, Dolby® Atmos, DTS® Headphone X, 6K Cinema and 4K TV with HDMI 2 (which has an audio bandwidth of 1536 kHz), the industry creates a roadmap for a quality aware audience.  A true quality upgrade of the overall cinematic experience is on-going. HPC384 Spec. is here to keep music production on par with those innovations and it will provide the necessary tools, specifications and revolutionary techniques so that music professionals will be able to produce and deliver high quality content to meet the demands and expectations of their audience.

Preliminary Tests

In our preliminary tests we rendered the first ever reverb at 1536kHz using U-He Zebra 2 VST clocked at 384 kHz as our sound generator. This sound is quite likely the most mathematically complex and harmonically rich single sound ever created in the digital domain. Sound examples here: http://www.hpcmusic.com/#!hpc384/crrb

U-He Diva, which is an advanced VST instrument, could playback in real time at 384 kHz with infinite notes of polyphony while the same instrument when used in a top-of-the-range workstation cannot perform more than few notes at 192 kHz. The highest bandwidth we managed to work with was 6144 kHz. We use bandwidth as a measure of efficiency of the system when it comes to music production. This way, when software developers are ready for heavy mathematics in low latency, almost real-time performance, we would know how to setup this reality-engine. Moreover, Dolby is heavily experimenting with many surround channels in order to enhance the localization information of sound. Using HPC we can go a step further and enhance the localization information of music (and not only sound) by composing and arranging in many-channel surround formats in a fully discrete way (3D Music)

On a cost per GFLOPS basis, we found that HPC for music can be roughly 35X better than the current industry-standard solutions, with 10X more bandwidth we can operate in real-time performance per audio track and enable unlimited track counts (high scalability).

Cost per GFLOPS

The future is about the audience experience

As for next steps, we need to work on the form factor of those solutions and further explore software opportunities. The evolution of music creation leads to an evolution of music enjoyment. In the same way that the vinyl record, walkman, CD and MP3 changed music for the better (or sometimes for the worse), we now see new products on the horizon that can revolutionize the audience experience.

Antonis Karalis

More info at www.hpcmusic.com

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Machine Learning at HPC User Forum: Drilling into Specific Use Cases

September 22, 2017

The 66th HPC User Forum held September 5-7, in Milwaukee, Wisconsin, at the elegant and historic Pfister Hotel, highlighting the 1893 Victorian décor and art of “The Grand Hotel Of The West,” contrasted nicely with Read more…

By Arno Kolster

Google Cloud Makes Good on Promise to Add Nvidia P100 GPUs

September 21, 2017

Google has taken down the notice on its cloud platform website that says Nvidia Tesla P100s are “coming soon.” That's because the search giant has announced the beta launch of the high-end P100 Nvidia Tesla GPUs on t Read more…

By George Leopold

Cray Wins $48M Supercomputer Contract from KISTI

September 21, 2017

It was a good day for Cray which won a $48 million contract from the Korea Institute of Science and Technology Information (KISTI) for a 128-rack CS500 cluster supercomputer. The new system, equipped with Intel Xeon Scal Read more…

By John Russell

HPE Extreme Performance Solutions

HPE Prepares Customers for Success with the HPC Software Portfolio

High performance computing (HPC) software is key to harnessing the full power of HPC environments. Development and management tools enable IT departments to streamline installation and maintenance of their systems as well as create, optimize, and run their HPC applications. Read more…

Adolfy Hoisie to Lead Brookhaven’s Computing for National Security Effort

September 21, 2017

Brookhaven National Laboratory announced today that Adolfy Hoisie will chair its newly formed Computing for National Security department, which is part of Brookhaven’s new Computational Science Initiative (CSI). Read more…

By John Russell

Machine Learning at HPC User Forum: Drilling into Specific Use Cases

September 22, 2017

The 66th HPC User Forum held September 5-7, in Milwaukee, Wisconsin, at the elegant and historic Pfister Hotel, highlighting the 1893 Victorian décor and art o Read more…

By Arno Kolster

Stanford University and UberCloud Achieve Breakthrough in Living Heart Simulations

September 21, 2017

Cardiac arrhythmia can be an undesirable and potentially lethal side effect of drugs. During this condition, the electrical activity of the heart turns chaotic, Read more…

By Wolfgang Gentzsch, UberCloud, and Francisco Sahli, Stanford University

PNNL’s Center for Advanced Tech Evaluation Seeks Wider HPC Community Ties

September 21, 2017

Two years ago the Department of Energy established the Center for Advanced Technology Evaluation (CENATE) at Pacific Northwest National Laboratory (PNNL). CENAT Read more…

By John Russell

Exascale Computing Project Names Doug Kothe as Director

September 20, 2017

The Department of Energy’s Exascale Computing Project (ECP) has named Doug Kothe as its new director effective October 1. He replaces Paul Messina, who is stepping down after two years to return to Argonne National Laboratory. Kothe is a 32-year veteran of DOE’s National Laboratory System. Read more…

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blu Read more…

By Merle Giles

Kathy Yelick Charts the Promise and Progress of Exascale Science

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakthrough Science at the Exascale” at the ACM Europe Conference in Barcelona. In conjunction with her presentation, Yelick agreed to a short Q&A discussion with HPCwire. Read more…

By Tiffany Trader

DARPA Pledges Another $300 Million for Post-Moore’s Readiness

September 14, 2017

The Defense Advanced Research Projects Agency (DARPA) launched a giant funding effort to ensure the United States can sustain the pace of electronic innovation vital to both a flourishing economy and a secure military. Under the banner of the Electronics Resurgence Initiative (ERI), some $500-$800 million will be invested in post-Moore’s Law technologies. Read more…

By Tiffany Trader

IBM Breaks Ground for Complex Quantum Chemistry

September 14, 2017

IBM has reported the use of a novel algorithm to simulate BeH2 (beryllium-hydride) on a quantum computer. This is the largest molecule so far simulated on a quantum computer. The technique, which used six qubits of a seven-qubit system, is an important step forward and may suggest an approach to simulating ever larger molecules. Read more…

By John Russell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

GlobalFoundries: 7nm Chips Coming in 2018, EUV in 2019

June 13, 2017

GlobalFoundries has formally announced that its 7nm technology is ready for customer engagement with product tape outs expected for the first half of 2018. The Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This