The Top Supercomputing Led Discoveries of 2013

By Nicole Hemsoth

January 2, 2014

Oil and Gas, Renewable Energy

natureOil and gas supercomputers are finding their way into the upper ranks of the Top500 with many of the major companies retrofitting their existing systems or cutting the ribbon on new centers.

Back in October, BP announced that it has opened a new facility in Houston, Texas, that is designed house the “world’s largest supercomputer for commercial research.” The Center for High-Performance Computing is part of BP’s five-year, $100 million investment in computing.

As we reported this year, BP’s newest supercomputer was built by HP and Intel. With 2.2 petaflops of data-crunching potential, the new supercomputer has almost twice as much computing power as BP’s previous machine. The new supercomputer also comes with 1,000 TB of total memory and 23.5 petabytes of disk space (which is equivalent of over 40,000 average laptop computers).

Last December, HPCwire learned that BP planned to derive its FLOPs from a CPU-only strategy. The new system would employ about 67,000 CPUs, but no GPUs or Phis. At the time, Keith Gray, BP’s HPC center manager, told HPCwire that the British firm wasn’t ready to make the leap to heterogeneous computing. “We continue to test accelerators,” he shared in an email, “but have not built a strong business case for our complete application base.”

Also in oil and gas news this year was a new system from SGI tweaked from its ICE X HPC system for French oil and gas giant, Total. The approximately $78 million ICE X based system will clock in about ninth place on the Top 500 list as it stands now, ringing in at around 2.3 petaflops, at least in terms of its peak Linpack calculations. SGI expects it to pull the title of top commercial system this year, which is probably not an unreasonable assumption given its predicted performance across its 110,592 Xeon E5-2670 cores and 442 TB of memory that is split on this distributed-memory system.

On the specs front, SGI points to the data management capabilities, consisting of 7 PB of storage, including its native InfiniteStorage disk arrays (17,000 of them to be exact) and their DMF tiered storage virtualization backed by integrated Lustre.

In a partnership with Sandia National Lab, GE Global Research, the technology development arm of the General Electric Company, announced research that could significantly impact the design of future wind turbine blades. Utilizing the power of high-performance computing (HPC) to perform complex calculations, GE engineers have overcome previous design constraints, allowing them to begin exploring ways to design reengineered wind blades that are low-noise and more prolific power-producers.

Back in May, the Colorado School of Mines revealed its new 155 teraflop supercomputer dubbed “BlueM” which is designed to allow researchers to run large simulations in support of the university’s core research areas while operating on the forefront of algorithm development using a powerful hybrid system. The system will be housed at the National Center for Atmospheric Research (NCAR) in a major new collaboration between the two organizations.

Earthquakes, Tornadoes and Natural Disasters

tornadoWhizzing through 213 trillion calculations per second, newly upgraded supercomputers of NOAA’s National Weather Service are now more than twice as fast in processing sophisticated computer models to provide more accurate forecasts further out in time. Nicknamed “Tide,” the supercomputer in Reston, Va., and its Orlando-based backup named “Gyre,” are operating with 213 teraflops (TF) — up from the 90 TF with the computers that preceded them. This higher processing power allows the National Weather Service to implement an enhanced Hurricane Weather Research and Forecasting (HWRF) model.

The MET Office, the UK’s National Weather Service, relies on more than 10 million weather observations from sites around the world, a sophisticated atmospheric model and a £30 million IBM supercomputer to generate 3,000 tailored forecasts every day. Thanks to this advanced forecasting system, climate scientists were able to predict the size and path of Monday’s St. Jude’s Day storm four days before it formed.

University of Oklahoma associate professor Amy McGovern is working to revolutionize tornado and storm prediction. McGovern’s ambitious tornado modeling and simulation project seeks to explain why some storms generate tornadoes while others don’t. The research is giving birth to new techniques for identifying the likely path of twisters through both space and time.

The deadly EF5 tornado that hit Moore, Oklahoma on May 20 was unique in several ways. Not only was it one of the strongest twisters ever recorded, but forecasters were able to issue a tornado warning 36 minutes in advance, saving lives. As our own Alex Woodie reported, playing a part in that forecast was a Cray supercomputer at the National Institute for Computational Sciences (NICS). Darter, which has nearly 12,000 Intel Sandy Bridge cores and 250 teraflops of peak capacity, was used to calculate the detailed Storm-scale Ensemble Forecasts (SSEF) that regional weather forecasters–such as the National Weather Service office in Norman, Oklahoma that issued the 36-minute, life-saving warning on May 20–rely on to predict tornados and other severe weather events.

Under the sponsorship of the National Nuclear Security Administration’s Office of Defense Nuclear Nonproliferation R&D, Sandia National Laboratories and Los Alamos National Laboratory have partnered to develop a 3-D model of the Earth’s mantle and crust called SALSA3D, or Sandia-Los Alamos 3D. The purpose of this model is to assist the US Air Force and the international Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) in Vienna, Austria, more accurately locate all types of explosions.

Back in June, SGI, a leader in technical computing and Big Data, has announced its NVIDIA Tesla GPU-powered SGI Rackable servers have been deployed in the Department of Geosciences at Princeton University to drive next-generation earthquake research. The department will utilize five main open-source software packages and is leveraging NVIDIA GPUs for the SPECFEM3D ‘Sesame’ application, which simulates seismic wave propagation on regional and global scales.

Military and Defense

findata2We’ll leave the discussions about the NSA and mass surveillance for other publications, although it’s hard to imagine all of the system and software innovations that are going toward those efforts now—and did in 2013. While that topic has grabbed the mainstream ear this year, there are some noteworthy developments in national security and defense that were lost in the headlines.

Geospatial intelligence data collection methods are increasingly complex—and accordingly, the amount and quality of the data they produce are opening new opportunities for governments to exploit for military and defense purposes. GPU giant NVIDIA reached out to this growing area this year by offering up a platform for the geospatial intelligence community with its GeoInt Accelerator. The goal of the packaged offering is to provide an integrated suite of tools for geospatial intelligence analysts as well as that community’s specialty developers that are primed to take advantage of GPU speedups.

In addition to offering a number of key applications relevant to this community (from situational awareness, satellite imagery and object detection software) they’ve also pulled together a number of relevant libraries for defense contractors and integrators to use for building GPU-accelerated applications, including their own Performance Primitives, MATLAB Imaging Toolkit, CUDA FFT, Accelereyes’ ArrayFire and other contents.

Centers that take advantage of military and defense data are also growing. For instance, the Air Force Research Laboratory Supercomputing Resource Center (DSRC) has a new addition to its fleet of supers via its new SGI ICE X system called Spirit, which will be housed at the Wright-Patterson Air Force base in Dayton, Ohio. The top 20-level system, which is capable of 1.4 petaflops, will support various research, development, testing and evaluation projects, particularly on the aircraft and ship design fronts. Spirit boasts 4,608 nodes and 73,728 Xeon cores humming at 2.6 GHz, as well as 146 TB of memory and 4.6 PB of disk space.

The US Army Research Laboratory (ARL) took the wraps off a new supercomputing center in 2013—this center is set to advance the service’s war-fighting capability. Two HPC systems have been installed at the ARL Supercomputing Center at the Aberdeen Proving Grounds, which was the home of ENIAC, the world’s first general-purpose electronic computer. It goes without saying that the two iDataPlex systems at the ARL Supercomputing Center have vastly more processing capacity than ENIAC, which was installed by the Army at APG in 1946 to do ballistics calculations. Whereas the new Army’s new supercomputers have the capability to process trillions of floating-point operations per second, or teraflops, ENIAC could manage hundreds per second.

As Alex Woodie reported, “Army scientists and engineers will use the supercomputers to model and evaluate a wide range of soldier- and combat-vehicle-related materials in advance of actual manufacturing. This will accelerate product development by allowing the Army to invest the time and money for actual physical testing for only the products showing the highest promise through modeling.”

Financial Markets

finmkts2As we see each time HPC on Wall Street happens during the year, and of course throughout the news cycle, the financial services sector as a whole is one of the first adopters—and among the greatest commercial innovators when it comes to HPC technologies.

Of course, this doesn’t mean that computers are always the worthy allies markets need them to be. Recall that there were some glitches in 2013, which led us to speculate on what the future of reliability will look like going forward.

There were some striking technology developments this year for the sector, despite some of the more mainstream controversies about placing our utter faith in the “hands” of machines. For instance, London-based bank HSBC demonstrated that it may be able to save millions of dollars in computer costs by moving a portfolio pricing process from a grid of Intel Xeon processors to NVIDIA Tesla GPUs, reports Xcelerit, the company that helped the bank with its experiment by providing CUDA programming tools.

In April, Xcelerit reported on the promising experiment conducted by the Quantitative Risk and Valuation Group (QRVG) at HSBC, which reported more than $2.6 trillion in assets in 2012. The QRVG is responsible for running Credit Value Adjustment (CVA) processes every night over HSBC’s entire portfolio to compute its risk exposure, per Basel III requirements.

While we’re on the topic of financial services and the new year, make sure to take a look at what’s cooking for the 2014 HPC for Wall Street event.

Looking Ahead to 2014

We can expect to see these same general areas in next year’s summary, but the performance, capability and programmability will hopefully continue to improve, leading to more insights. Outside of these broader industry and research segments, we look forward to delivering more interesting topics that don’t fit the mold (like this year’s stories about GPUs and the mysteries of flying snakes or tracking the first dinosaur steps).

Thanks for joining us for another exciting year!

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

NSF Budget Approved for $8.3B in 2020, a 2.5% Increase

January 16, 2020

The National Science Foundation (NSF) has been spared a President Trump-proposed budget cut that would have rolled back its funding to 2012 levels. Congress passed legislation last month that sets the budget at $8.3 bill Read more…

By Staff report

NOAA Updates Its Massive, Supercomputer-Generated Climate Dataset

January 15, 2020

As Australia burns, understanding and mitigating the climate crisis is more urgent than ever. Now, by leveraging the computing resources at the National Energy Research Scientific Computing Center (NERSC), the U.S. National Oceanic and Atmospheric Administration (NOAA) has updated its 20th Century Reanalysis Project (20CR) dataset... Read more…

By Oliver Peckham

Atos-AMD System to Quintuple Supercomputing Power at European Centre for Medium-Range Weather Forecasts

January 15, 2020

The United Kingdom-based European Centre for Medium-Range Weather Forecasts (ECMWF), a supercomputer-powered weather forecasting organization backed by most of the countries in Europe, has signed a four-year, $89-million Read more…

By Oliver Peckham

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, the gold standard programming languages for fast performance Read more…

By John Russell

Quantum Computing, ML Drive 2019 Patent Awards

January 14, 2020

The dizzying pace of technology innovation often fueled by the growing availability of computing horsepower is underscored by the race to develop unique designs and application that can be patented. Among the goals of ma Read more…

By George Leopold

AWS Solution Channel

Challenging the barriers to High Performance Computing in the Cloud

Cloud computing helps democratize High Performance Computing by placing powerful computational capabilities in the hands of more researchers, engineers, and organizations who may lack access to sufficient on-premises infrastructure. Read more…

IBM Accelerated Insights

Intelligent HPC – Keeping Hard Work at Bay(es)

Since the dawn of time, humans have looked for ways to make their lives easier. Over the centuries human ingenuity has given us inventions such as the wheel and simple machines – which help greatly with tasks that would otherwise be extremely laborious. Read more…

Andrew Jones Joins Microsoft Azure HPC Team

January 13, 2020

Andrew Jones announced today he is joining Microsoft as part of the Azure HPC engineering & product team in early February. Jones makes the move after nearly 12 years at the UK HPC consultancy Numerical Algorithms Gr Read more…

By Staff report

Atos-AMD System to Quintuple Supercomputing Power at European Centre for Medium-Range Weather Forecasts

January 15, 2020

The United Kingdom-based European Centre for Medium-Range Weather Forecasts (ECMWF), a supercomputer-powered weather forecasting organization backed by most of Read more…

By Oliver Peckham

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

White House AI Regulatory Guidelines: ‘Remove Impediments to Private-sector AI Innovation’

January 9, 2020

When it comes to new technology, it’s been said government initially stays uninvolved – then gets too involved. The White House’s guidelines for federal a Read more…

By Doug Black

IBM Touts Quantum Network Growth, Improving QC Quality, and Battery Research

January 8, 2020

IBM today announced its Q (quantum) Network community had grown to 100-plus – Delta Airlines and Los Alamos National Laboratory are among most recent addition Read more…

By John Russell

HPCwire Awards Highlight Supercomputing Achievements in the Sciences

January 7, 2020

In November at SC19 in Denver, the HPCwire Readers’ and Editors’ Choice awards program celebrated its 16th year of honoring remarkable achievements in high-performance computing. With categories ranging from Best Use of HPC in Energy to Top HPC-Enabled Scientific Achievement, many of the winners contributed to groundbreaking developments in the sciences. This editorial highlights those awards. Read more…

By Oliver Peckham

Blasts from the (Recent) Past and Hopes for the Future

December 23, 2019

What does 2020 look like to you? What did 2019 look like? Lots happened but the main trends were carryovers from 2018 – AI messaging again blanketed everything; the roll-out of new big machines and exascale announcements continued; processor diversity and system disaggregation kicked up a notch; hyperscalers continued flexing their muscles (think AWS and its Graviton2 processor); and the U.S. and China continued their awkward trade war. Read more…

By John Russell

ARPA-E Applies ML to Power Generation Designs

December 19, 2019

The U.S. Energy Department’s research arm is leveraging machine learning technologies to simplify the design process for energy systems ranging from photovolt Read more…

By George Leopold

Focused on ‘Silicon TAM,’ Intel Puts Gary Patton, Former GlobalFoundries CTO, in Charge of Design Enablement

December 12, 2019

Change within Intel’s upper management – and to its company mission – has continued as a published report has disclosed that chip technology heavyweight G Read more…

By Doug Black

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

IBM Unveils Latest Achievements in AI Hardware

December 13, 2019

“The increased capabilities of contemporary AI models provide unprecedented recognition accuracy, but often at the expense of larger computational and energet Read more…

By Oliver Peckham

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, Read more…

By Tiffany Trader

51,000 Cloud GPUs Converge to Power Neutrino Discovery at the South Pole

November 22, 2019

At the dead center of the South Pole, thousands of sensors spanning a cubic kilometer are buried thousands of meters beneath the ice. The sensors are part of Ic Read more…

By Oliver Peckham

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed instances for storage workloads. The fourth-generation Azure D-series and E-series virtual machines previewed at the Rome launch in August are now generally available. Read more…

By Tiffany Trader

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This