The Top Supercomputing Led Discoveries of 2013

By Nicole Hemsoth

January 2, 2014

Oil and Gas, Renewable Energy

natureOil and gas supercomputers are finding their way into the upper ranks of the Top500 with many of the major companies retrofitting their existing systems or cutting the ribbon on new centers.

Back in October, BP announced that it has opened a new facility in Houston, Texas, that is designed house the “world’s largest supercomputer for commercial research.” The Center for High-Performance Computing is part of BP’s five-year, $100 million investment in computing.

As we reported this year, BP’s newest supercomputer was built by HP and Intel. With 2.2 petaflops of data-crunching potential, the new supercomputer has almost twice as much computing power as BP’s previous machine. The new supercomputer also comes with 1,000 TB of total memory and 23.5 petabytes of disk space (which is equivalent of over 40,000 average laptop computers).

Last December, HPCwire learned that BP planned to derive its FLOPs from a CPU-only strategy. The new system would employ about 67,000 CPUs, but no GPUs or Phis. At the time, Keith Gray, BP’s HPC center manager, told HPCwire that the British firm wasn’t ready to make the leap to heterogeneous computing. “We continue to test accelerators,” he shared in an email, “but have not built a strong business case for our complete application base.”

Also in oil and gas news this year was a new system from SGI tweaked from its ICE X HPC system for French oil and gas giant, Total. The approximately $78 million ICE X based system will clock in about ninth place on the Top 500 list as it stands now, ringing in at around 2.3 petaflops, at least in terms of its peak Linpack calculations. SGI expects it to pull the title of top commercial system this year, which is probably not an unreasonable assumption given its predicted performance across its 110,592 Xeon E5-2670 cores and 442 TB of memory that is split on this distributed-memory system.

On the specs front, SGI points to the data management capabilities, consisting of 7 PB of storage, including its native InfiniteStorage disk arrays (17,000 of them to be exact) and their DMF tiered storage virtualization backed by integrated Lustre.

In a partnership with Sandia National Lab, GE Global Research, the technology development arm of the General Electric Company, announced research that could significantly impact the design of future wind turbine blades. Utilizing the power of high-performance computing (HPC) to perform complex calculations, GE engineers have overcome previous design constraints, allowing them to begin exploring ways to design reengineered wind blades that are low-noise and more prolific power-producers.

Back in May, the Colorado School of Mines revealed its new 155 teraflop supercomputer dubbed “BlueM” which is designed to allow researchers to run large simulations in support of the university’s core research areas while operating on the forefront of algorithm development using a powerful hybrid system. The system will be housed at the National Center for Atmospheric Research (NCAR) in a major new collaboration between the two organizations.

Earthquakes, Tornadoes and Natural Disasters

tornadoWhizzing through 213 trillion calculations per second, newly upgraded supercomputers of NOAA’s National Weather Service are now more than twice as fast in processing sophisticated computer models to provide more accurate forecasts further out in time. Nicknamed “Tide,” the supercomputer in Reston, Va., and its Orlando-based backup named “Gyre,” are operating with 213 teraflops (TF) — up from the 90 TF with the computers that preceded them. This higher processing power allows the National Weather Service to implement an enhanced Hurricane Weather Research and Forecasting (HWRF) model.

The MET Office, the UK’s National Weather Service, relies on more than 10 million weather observations from sites around the world, a sophisticated atmospheric model and a £30 million IBM supercomputer to generate 3,000 tailored forecasts every day. Thanks to this advanced forecasting system, climate scientists were able to predict the size and path of Monday’s St. Jude’s Day storm four days before it formed.

University of Oklahoma associate professor Amy McGovern is working to revolutionize tornado and storm prediction. McGovern’s ambitious tornado modeling and simulation project seeks to explain why some storms generate tornadoes while others don’t. The research is giving birth to new techniques for identifying the likely path of twisters through both space and time.

The deadly EF5 tornado that hit Moore, Oklahoma on May 20 was unique in several ways. Not only was it one of the strongest twisters ever recorded, but forecasters were able to issue a tornado warning 36 minutes in advance, saving lives. As our own Alex Woodie reported, playing a part in that forecast was a Cray supercomputer at the National Institute for Computational Sciences (NICS). Darter, which has nearly 12,000 Intel Sandy Bridge cores and 250 teraflops of peak capacity, was used to calculate the detailed Storm-scale Ensemble Forecasts (SSEF) that regional weather forecasters–such as the National Weather Service office in Norman, Oklahoma that issued the 36-minute, life-saving warning on May 20–rely on to predict tornados and other severe weather events.

Under the sponsorship of the National Nuclear Security Administration’s Office of Defense Nuclear Nonproliferation R&D, Sandia National Laboratories and Los Alamos National Laboratory have partnered to develop a 3-D model of the Earth’s mantle and crust called SALSA3D, or Sandia-Los Alamos 3D. The purpose of this model is to assist the US Air Force and the international Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) in Vienna, Austria, more accurately locate all types of explosions.

Back in June, SGI, a leader in technical computing and Big Data, has announced its NVIDIA Tesla GPU-powered SGI Rackable servers have been deployed in the Department of Geosciences at Princeton University to drive next-generation earthquake research. The department will utilize five main open-source software packages and is leveraging NVIDIA GPUs for the SPECFEM3D ‘Sesame’ application, which simulates seismic wave propagation on regional and global scales.

Military and Defense

findata2We’ll leave the discussions about the NSA and mass surveillance for other publications, although it’s hard to imagine all of the system and software innovations that are going toward those efforts now—and did in 2013. While that topic has grabbed the mainstream ear this year, there are some noteworthy developments in national security and defense that were lost in the headlines.

Geospatial intelligence data collection methods are increasingly complex—and accordingly, the amount and quality of the data they produce are opening new opportunities for governments to exploit for military and defense purposes. GPU giant NVIDIA reached out to this growing area this year by offering up a platform for the geospatial intelligence community with its GeoInt Accelerator. The goal of the packaged offering is to provide an integrated suite of tools for geospatial intelligence analysts as well as that community’s specialty developers that are primed to take advantage of GPU speedups.

In addition to offering a number of key applications relevant to this community (from situational awareness, satellite imagery and object detection software) they’ve also pulled together a number of relevant libraries for defense contractors and integrators to use for building GPU-accelerated applications, including their own Performance Primitives, MATLAB Imaging Toolkit, CUDA FFT, Accelereyes’ ArrayFire and other contents.

Centers that take advantage of military and defense data are also growing. For instance, the Air Force Research Laboratory Supercomputing Resource Center (DSRC) has a new addition to its fleet of supers via its new SGI ICE X system called Spirit, which will be housed at the Wright-Patterson Air Force base in Dayton, Ohio. The top 20-level system, which is capable of 1.4 petaflops, will support various research, development, testing and evaluation projects, particularly on the aircraft and ship design fronts. Spirit boasts 4,608 nodes and 73,728 Xeon cores humming at 2.6 GHz, as well as 146 TB of memory and 4.6 PB of disk space.

The US Army Research Laboratory (ARL) took the wraps off a new supercomputing center in 2013—this center is set to advance the service’s war-fighting capability. Two HPC systems have been installed at the ARL Supercomputing Center at the Aberdeen Proving Grounds, which was the home of ENIAC, the world’s first general-purpose electronic computer. It goes without saying that the two iDataPlex systems at the ARL Supercomputing Center have vastly more processing capacity than ENIAC, which was installed by the Army at APG in 1946 to do ballistics calculations. Whereas the new Army’s new supercomputers have the capability to process trillions of floating-point operations per second, or teraflops, ENIAC could manage hundreds per second.

As Alex Woodie reported, “Army scientists and engineers will use the supercomputers to model and evaluate a wide range of soldier- and combat-vehicle-related materials in advance of actual manufacturing. This will accelerate product development by allowing the Army to invest the time and money for actual physical testing for only the products showing the highest promise through modeling.”

Financial Markets

finmkts2As we see each time HPC on Wall Street happens during the year, and of course throughout the news cycle, the financial services sector as a whole is one of the first adopters—and among the greatest commercial innovators when it comes to HPC technologies.

Of course, this doesn’t mean that computers are always the worthy allies markets need them to be. Recall that there were some glitches in 2013, which led us to speculate on what the future of reliability will look like going forward.

There were some striking technology developments this year for the sector, despite some of the more mainstream controversies about placing our utter faith in the “hands” of machines. For instance, London-based bank HSBC demonstrated that it may be able to save millions of dollars in computer costs by moving a portfolio pricing process from a grid of Intel Xeon processors to NVIDIA Tesla GPUs, reports Xcelerit, the company that helped the bank with its experiment by providing CUDA programming tools.

In April, Xcelerit reported on the promising experiment conducted by the Quantitative Risk and Valuation Group (QRVG) at HSBC, which reported more than $2.6 trillion in assets in 2012. The QRVG is responsible for running Credit Value Adjustment (CVA) processes every night over HSBC’s entire portfolio to compute its risk exposure, per Basel III requirements.

While we’re on the topic of financial services and the new year, make sure to take a look at what’s cooking for the 2014 HPC for Wall Street event.

Looking Ahead to 2014

We can expect to see these same general areas in next year’s summary, but the performance, capability and programmability will hopefully continue to improve, leading to more insights. Outside of these broader industry and research segments, we look forward to delivering more interesting topics that don’t fit the mold (like this year’s stories about GPUs and the mysteries of flying snakes or tracking the first dinosaur steps).

Thanks for joining us for another exciting year!

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AWS Embraces FPGAs, ‘Elastic’ GPUs

December 2, 2016

A new instance type rolled out this week by Amazon Web Services is based on customizable field programmable gate arrays that promise to strike a balance between performance and cost as emerging workloads create requirements often unmet by general-purpose processors. Read more…

By George Leopold

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 1, 2016)

December 1, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPC Career Notes (Dec. 2016)

December 1, 2016

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high performance computing community. Read more…

By Thomas Ayres

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

IBM and NSF Computing Pioneer Erich Bloch Dies at 91

November 30, 2016

Erich Bloch, a computational pioneer whose competitive zeal and commercial bent helped transform the National Science Foundation while he was its director, died last Friday at age 91. Bloch was a productive force to be reckoned. During his long stint at IBM prior to joining NSF Bloch spearheaded development of the “Stretch” supercomputer and IBM’s phenomenally successful System/360. Read more…

By John Russell

Pioneering Programmers Awarded Presidential Medal of Freedom

November 30, 2016

In an awards ceremony on November 22, President Barack Obama recognized 21 recipients with the Presidential Medal of Freedom, the Nation’s highest civilian honor. Read more…

By Tiffany Trader

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Intel Details AI Hardware Strategy for Post-GPU Age

November 21, 2016

Last week at SC16, Intel revealed its product roadmap for embedding its processors with key capabilities and attributes needed to take artificial intelligence (AI) to the next level. Read more…

By Alex Woodie

SC Says Farewell to Salt Lake City, See You in Denver

November 18, 2016

After an intense four-day flurry of activity (and a cold snap that brought some actual snow flurries), the SC16 show floor closed yesterday (Thursday) and the always-extensive technical program wound down today. Read more…

By Tiffany Trader

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Leading Solution Providers

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This