Scaling the Super Cloud

By Nicole Hemsoth

January 15, 2014

“The number one problem we face as humanity is getting people to think outside of the boxes they bought,” says Cycle Computing CEO, Jason Stowe.

His company has made big waves and proven that the combination of Amazon servers and their own innovations can open new infrastructure options for users with HPC applications. For instance, they recently spun up a 156,000-core Amazon Web Services (AWS) cluster for Schrödinger to power a quantum chemistry application across 8 geographical regions. While many of you can project what a supercomputer of that magnitude might cost, the duration of their run to sort compounds cost them around $33,000—and ran in less than a day distributed across 16,788 instances.

They’ve done similar projects at massive scale for a number of other users in life sciences and beyond—but as they continue to scale, they’ve encountered some of the same bare metal challenges HPC centers do, with the added complexity of adding compute across multiple regions, different datacenters, and the need to shut down and spin up machines in a more complicated fashion than an in-house supercomputer might.

The answer to these challenges is found in the company’s own custom-developed Jupiter, the code name for an out-of-this-world HPC cloud management tool that tackles a few key challenges of running large, complex workloads on AWS.

“Back when we did the 50,000 core and million hour runs, at a certain point, scaling the task distribution environment became particularly problematic because traditional batch schedulers and service oriented architectures aren’t geared toward large amounts of compute power coming and going as a workload increases and decreases,” said Stowe. “Also, these environments aren’t very failure friendly—we needed to develop something that would meet both scale and failure requirements.”

This required from-scratch development on Cycle’s part, however, since the workload management options that they might have tweaked (Stowe cites solid ones, including Condor, Grid Engine, PBS, and Platform/IBM) lacked the capabilities for cloud environments and the types of workload tricks needed to run HPC cloud jobs.

“With a lot of the supercomputing environments now that have millions of processors, the schedulers on those are really good at telling all of those processors to do one MPI job. But what we wanted is the exact opposite—we wanted some that could tell hundreds of thousands or millions of processors to do several thousand things at a one time.” In other words, it wasn’t a “simple” matter of telling the cloud-based system to handle one MPI job, for example. It would be doing 50,000 or more MPI jobs inside the distributed computing environment. “We didn’t want to do a batch necessarily but we wanted to support low overhead scheduling so you can do more programmatic scheduling of workloads and get interactive results back.”

One of the other challenges of working with servers across several geographic regions is making sure that there’s built-in fault tolerance as well as an eye on efficiency. Prices and compute cycles are in a state of flux, so Cycle needed to build in the ability to turn off entire servers, datacenters and even regions if needed to keep applications going in the event of downtime. Stowe says they experimented with this feature, which is both manual or automated depending on user policies. They shut down all the processors in Australia during one experimental run because they weren’t getting enough juice, which rerouted that processing to another region.

In terms of the overhead for Jupiter, Stowe says that there are very few servers required. “We were recently able to manage 16,000 servers with only a handful of servers—under 20,” Stowe said. These few servers provided all the task distribution services for the 156,000-core run across 8 geographic regions and if we needed to, we could have gone with fewer. The only reason we didn’t is because we wanted to have one head node in each region.”

The Chef-based Jupiter tools were built from the ground up, with early lessons about how to make a highly scalable, low overhead cloud scheduler coming from work in 2009 for a custom financial services cloud project. The goals toward scalability and reliability were similar, but they’ve been able to make the offering robust enough to tackle the Schrödinger example cost effectively and in the manner they’d hoped.

Cycle will ramp up the story and accessibility of Jupiter (named after the planet, which has massive clouds) in 2014 in ways similar to what happened with Yahoo and Hadoop. “We’ve had significant vetting around this software, we’re working toward making it easy to download so it will be more widely available.”

Despite the often-cited challenges for HPC clouds, including higher latencies, security and other perceived barriers, clouds adoption in high performance computing is growing. Just a few years ago, only around 10% of HPC sites reported using clouds, but according to the most recent IDC estimates, it’s jumped to close to 24%. While this can lead to a discussion about public versus private clouds (as the considerations are somewhat different), Stowe sees this is an affirmation of what his company has been pushing for the last several years—the idea that clouds can be rendered robust enough to perform well for complex applications at massive scale without borders.

The technical hurdles including security, onboarding applications, operational management, reporting and running cost effectively at high performance are being addressed in the many hyperscale environments that provide the web service many of us count on—from Facebook to Netflix and Google. Stowe and his company have stashed away lessons and tools from that world and meshed them with their long experiences working with HPC applications.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SRC Spends $200M on University Research Centers

January 16, 2018

The Semiconductor Research Corporation, as part of its JUMP initiative, has awarded $200 million to fund six research centers whose areas of focus span cognitive computing, memory-centric computing, high-speed communicat Read more…

By John Russell

US Seeks to Automate Video Analysis

January 16, 2018

U.S. military and intelligence agencies continue to look for new ways to use artificial intelligence to sift through huge amounts of video imagery in hopes of freeing analysts to identify threats and otherwise put their Read more…

By George Leopold

URISC@SC17 and the #LongestLastMile

January 11, 2018

A multinational delegation recently attended the Understanding Risk in Shared CyberEcosystems workshop, or URISC@SC17, in Denver, Colorado. URISC participants and presenters from 11 countries, including eight African nations, 12 U.S. states, Canada, India and Nepal, also attended SC17, the annual international conference for high performance computing, networking, storage and analysis that drew nearly 13,000 attendees. Read more…

By Elizabeth Leake, STEM-Trek Nonprofit

HPE Extreme Performance Solutions

HPE and NREL Take Steps to Create a Sustainable, Energy-Efficient Data Center with an H2 Fuel Cell

As enterprises attempt to manage rising volumes of data, unplanned data center outages are becoming more common and more expensive. As the cost of downtime rises, enterprises lose out on productivity and valuable competitive advantage without access to their critical data. Read more…

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

ANL’s Rick Stevens on CANDLE, ARM, Quantum, and More

January 8, 2018

Late last year HPCwire caught up with Rick Stevens, associate laboratory director for computing, environment and life Sciences at Argonne National Laboratory, f Read more…

By John Russell

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

The @hpcnotes Predictions for HPC in 2018

January 4, 2018

I’m not averse to making predictions about the world of High Performance Computing (and Supercomputing, Cloud, etc.) in person at conferences, meetings, causa Read more…

By Andrew Jones

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Independent Hyperion Research Will Chart its Own Course

December 19, 2017

Hyperion Research, formerly the HPC research and consulting practice within IDC, has become an independent company with Earl Joseph, the long-time leader of the Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Leading Solution Providers

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Nvidia, Partners Announce Several V100 Servers

September 27, 2017

Here come the Volta 100-based servers. Nvidia today announced an impressive line-up of servers from major partners – Dell EMC, Hewlett Packard Enterprise, IBM Read more…

By John Russell

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This