Scaling the Super Cloud

By Nicole Hemsoth

January 15, 2014

“The number one problem we face as humanity is getting people to think outside of the boxes they bought,” says Cycle Computing CEO, Jason Stowe.

His company has made big waves and proven that the combination of Amazon servers and their own innovations can open new infrastructure options for users with HPC applications. For instance, they recently spun up a 156,000-core Amazon Web Services (AWS) cluster for Schrödinger to power a quantum chemistry application across 8 geographical regions. While many of you can project what a supercomputer of that magnitude might cost, the duration of their run to sort compounds cost them around $33,000—and ran in less than a day distributed across 16,788 instances.

They’ve done similar projects at massive scale for a number of other users in life sciences and beyond—but as they continue to scale, they’ve encountered some of the same bare metal challenges HPC centers do, with the added complexity of adding compute across multiple regions, different datacenters, and the need to shut down and spin up machines in a more complicated fashion than an in-house supercomputer might.

The answer to these challenges is found in the company’s own custom-developed Jupiter, the code name for an out-of-this-world HPC cloud management tool that tackles a few key challenges of running large, complex workloads on AWS.

“Back when we did the 50,000 core and million hour runs, at a certain point, scaling the task distribution environment became particularly problematic because traditional batch schedulers and service oriented architectures aren’t geared toward large amounts of compute power coming and going as a workload increases and decreases,” said Stowe. “Also, these environments aren’t very failure friendly—we needed to develop something that would meet both scale and failure requirements.”

This required from-scratch development on Cycle’s part, however, since the workload management options that they might have tweaked (Stowe cites solid ones, including Condor, Grid Engine, PBS, and Platform/IBM) lacked the capabilities for cloud environments and the types of workload tricks needed to run HPC cloud jobs.

“With a lot of the supercomputing environments now that have millions of processors, the schedulers on those are really good at telling all of those processors to do one MPI job. But what we wanted is the exact opposite—we wanted some that could tell hundreds of thousands or millions of processors to do several thousand things at a one time.” In other words, it wasn’t a “simple” matter of telling the cloud-based system to handle one MPI job, for example. It would be doing 50,000 or more MPI jobs inside the distributed computing environment. “We didn’t want to do a batch necessarily but we wanted to support low overhead scheduling so you can do more programmatic scheduling of workloads and get interactive results back.”

One of the other challenges of working with servers across several geographic regions is making sure that there’s built-in fault tolerance as well as an eye on efficiency. Prices and compute cycles are in a state of flux, so Cycle needed to build in the ability to turn off entire servers, datacenters and even regions if needed to keep applications going in the event of downtime. Stowe says they experimented with this feature, which is both manual or automated depending on user policies. They shut down all the processors in Australia during one experimental run because they weren’t getting enough juice, which rerouted that processing to another region.

In terms of the overhead for Jupiter, Stowe says that there are very few servers required. “We were recently able to manage 16,000 servers with only a handful of servers—under 20,” Stowe said. These few servers provided all the task distribution services for the 156,000-core run across 8 geographic regions and if we needed to, we could have gone with fewer. The only reason we didn’t is because we wanted to have one head node in each region.”

The Chef-based Jupiter tools were built from the ground up, with early lessons about how to make a highly scalable, low overhead cloud scheduler coming from work in 2009 for a custom financial services cloud project. The goals toward scalability and reliability were similar, but they’ve been able to make the offering robust enough to tackle the Schrödinger example cost effectively and in the manner they’d hoped.

Cycle will ramp up the story and accessibility of Jupiter (named after the planet, which has massive clouds) in 2014 in ways similar to what happened with Yahoo and Hadoop. “We’ve had significant vetting around this software, we’re working toward making it easy to download so it will be more widely available.”

Despite the often-cited challenges for HPC clouds, including higher latencies, security and other perceived barriers, clouds adoption in high performance computing is growing. Just a few years ago, only around 10% of HPC sites reported using clouds, but according to the most recent IDC estimates, it’s jumped to close to 24%. While this can lead to a discussion about public versus private clouds (as the considerations are somewhat different), Stowe sees this is an affirmation of what his company has been pushing for the last several years—the idea that clouds can be rendered robust enough to perform well for complex applications at massive scale without borders.

The technical hurdles including security, onboarding applications, operational management, reporting and running cost effectively at high performance are being addressed in the many hyperscale environments that provide the web service many of us count on—from Facebook to Netflix and Google. Stowe and his company have stashed away lessons and tools from that world and meshed them with their long experiences working with HPC applications.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays 2017 Wraps Up in Barcelona

May 18, 2017

Barcelona has been absolutely lovely; the weather, the food, the people. I am, sadly, finishing my last day at PRACEdays 2017 with two sessions: an in-depth loo Read more…

By Kim McMahon

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

US, Europe, Japan Deepen Research Computing Partnership

May 18, 2017

On May 17, 2017, a ceremony was held during the PRACEdays 2017 conference in Barcelona to announce the memorandum of understanding (MOU) between PRACE in Europe Read more…

By Tiffany Trader

NSF, IARPA, and SRC Push into “Semiconductor Synthetic Biology” Computing

May 18, 2017

Research into how biological systems might be fashioned into computational technology has a long history with various DNA-based computing approaches explored. N Read more…

By John Russell

DOE’s HPC4Mfg Leads to Paper Manufacturing Improvement

May 17, 2017

Papermaking ranks third behind only petroleum refining and chemical production in terms of energy consumption. Recently, simulations made possible by the U.S. D Read more…

By John Russell

PRACEdays 2017: The start of a beautiful week in Barcelona

May 17, 2017

Touching down in Barcelona on Saturday afternoon, it was warm, sunny, and oh so Spanish. I was greeted at my hotel with a glass of Cava to sip and treated to a Read more…

By Kim McMahon

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

IBM PowerAI Tools Aim to Ease Deep Learning Data Prep, Shorten Training 

May 10, 2017

A new set of GPU-powered AI software announced by IBM today brings automation to many of the tedious, time consuming and complex aspects of AI project on-rampin Read more…

By Doug Black

Bright Computing 8.0 Adds Azure, Expands Machine Learning Support

May 9, 2017

Bright Computing, long a prominent provider of cluster management tools for HPC, today released version 8.0 of Bright Cluster Manager and Bright OpenStack. The Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular Read more…

By John Russell

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This