Emerging Architectures Boost Geospatial Application Performance

By Chenggang Lai, Miaoqing Huang, Xuan Shi, and Haihang You

January 23, 2014

Geospatial data is critical in a variety of applications – including transportation planning, hydrological network and watershed analysis, environmental modeling and surveillance, emergency response, and military operations. As the availability of geospatial data has expanded, its volume has accelerated, creating a variety of challenges and complexities that render traditional desktop-based geographical information systems (GIS) and remote-sensing software incapable of providing the requisite processing power.

Intel’s Many Integrated Core (MIC) architecture and the graphics processing unit (GPU) employ parallelism to achieve scalability with high performance for data-intensive computing over high-resolution spatial data. Our research has demonstrated that hybrid computer clusters equipped with the latest Intel MIC processors and NVIDIA GPUs can achieve a significant performance improvement for a range of typical geospatial applications, with Kriging interpolation, ISODATA, and Cellular Automata as examples. Details of our study are contained in a paper titled “Accelerating Geospatial Applications on Hybrid Architectures” in the proceedings of the 2013 IEEE International Conference on High Performance Computing and Communications & 2013 IEEE International Conference on Embedded and Ubiquitous Computing. The co-authors of the paper were Chenggang Lai, Miaoqing Huang, and Xuan Shi of the University of Arkansas, and Haihang You of the National Institute for Computational Sciences.

Coprocessor architecture

GPU architecture has been evolving for many years. Nvidia is a case in point, having gone through many generations, from G80 to GT200, Fermi, and today’s Kepler. The Kepler GPU architecture contains 15 streaming multiprocessors (SMXes), each of which consists of 192 single-precision cores and 64 double-precision cores. The Kepler architecture provides three advanced features to efficiently share the GPU resources among multiple host threads or processes (i.e., Hyper-Q), flexibly create new kernels on a GPU (i.e., dynamic parallelism), and reduce communication overhead across GPUs through GPUDirect. GPUs are normally used as accelerators in high-performance computer clusters. In a typical MPI-based parallel application, the MPI process executes on a host CPU that in turn allocates the computation to one or more client GPUs.

figure.1.kepler-architecture

NVIDIA’s Kepler GPU architecture. Image source: Lai et al., “Accelerating Geospatial Applications on Hybrid Architectures,” Proceedings of the 2013 IEEE International Conference on High Performance Computing and Communications & 2013 IEEE International Conference on Embedded and Ubiquitous Computing, 1545–1552, 2013.

The first commercially available Intel coprocessor based on MIC architecture is Xeon Phi. It contains up to 61 scalar processors with vector processing units. Direct communication between MIC coprocessors across different nodes is also supported through MPI. The following images show two approaches to parallelizing applications on computer clusters equipped with MIC processors. The first approach is to treat the MIC processors as clients to the host CPUs. The MPI processes will be hosted by CPUs, which will offload the computation to the MIC processors. Multithreading programming models such as OpenMP can be used to allocate many cores for data processing. The second approach is to let each MIC core directly host one MPI process. In this way, the 60 cores on the same die are treated as 60 independent processors while sharing the 8 GB on-board memory on the Xeon Phi 5110P.

figure.2.MIC_Use1.offloading

Offloading approach to implementing parallelism on the MIC cluster. Image source: Lai et al., “Accelerating Geospatial Applications on Hybrid Architectures,” Proceedings of the 2013 IEEE International Conference on High Performance Computing and Communications & 2013 IEEE International Conference on Embedded and Ubiquitous Computing, 1545–1552, 2013.

figure.3.MIC_Use2.directhost

Direct-host approach to implementing parallelism on the MIC cluster. Image source: Lai et al., “Accelerating Geospatial Applications on Hybrid Architectures,” Proceedings of the 2013 IEEE International Conference on High Performance Computing and Communications & 2013 IEEE International Conference on Embedded and Ubiquitous Computing, 1545–1552, 2013.

Benchmarks

Three different types of use case served as the benchmarks for this study: Kriging interpolation (embarrassingly parallelism), the Iterative Self-organizing Data-analysis Technique Algorithm (ISODATA) (loose communication in the computation), and Cellular Automata (intense communication).

Kriging is a geostatistical estimator that infers the value of a random field at an unobserved location, and can be viewed as a point interpolation that reads input point data and returns a raster grid with calculated estimations for each cell.

ISODATA is one of the most frequently used algorithms for unsupervised image classification algorithms in remote sensing applications. In general, it can be implemented in three steps: (1) calculate the initial mean value of each class; (2) classify each pixel to the nearest class; and (3) calculate the new class means based on all pixels in one class. The second and third steps are repeated until the change between two iterations is small enough. When multiple processors are used, only one summation from all processors is required in each iteration.

Cellular Automata are commonly used in a variety of geospatial modeling and simulation. Game of Life (GOL), invented by British mathematician John Conway, is a well-known generic Cellular Automaton that consists of a collection of cells that can live, die or multiply based on a few mathematical rules. The universe of the GOL is a two-dimensional orthogonal grid of square cells, each of which is in one of two possible states, alive (‘1’) or dead (‘0’). Every cell interacts with its eight neighbors, which are the cells that are horizontally, vertically, or diagonally adjacent.

Experiment setup

We conducted our experiments on two platforms, the National Science Foundation-sponsored Keeneland supercomputer and Beacon supercomputer. Keeneland Initial Delivery System (KIDS) is a 201 Teraflop, 120-node HP SL390 system with 240 Intel Xeon X5660 CPUs and 360 Nvidia Fermi GPUs, with the nodes connected by a QDR InfiniBand network. Each node has two 6-core 2.8 GHz Xeon CPUs and 3 Tesla M2090 GPUs. The Nvidia M2090 GPU contains 512 CUDA cores and 6 GB GDDR5 on-board memory. The Beacon system (a Cray CS300-AC Cluster Supercomputer) offers access to 48 compute nodes and 6 I/O nodes joined by an FDR InfiniBand interconnect providing 56 Gb/s of bi-directional bandwidth. Each compute node is equipped with 2 Intel Xeon E5-2670 8-core 2.6 GHz processors, 4 Intel Xeon Phi (MIC) coprocessors 5110P, 256 GB of RAM, and 960 GB of SSD storage. Each I/O node provides access to an additional 4.8 TB of SSD storage. For each benchmark, we had three parallel implementations on two clusters. i.e., MPI+CPU, MPI+MIC, MPI+GPU.

Results

figure.4.a.kriging-300xfigure.4.b.isodata-300xfigure.4.c.gol_32768-300x

Performance of benchmarks on four different configurations: (a) Kriging, (b) ISODATA, (c) GOL. Image source: Lai et al., “Accelerating Geospatial Applications on Hybrid Architectures,” Proceedings of the 2013 IEEE International Conference on High Performance Computing and Communications & 2013 IEEE International Conference on Embedded and Ubiquitous Computing, 1545–1552, 2013.

We want to show the strong scalability of the parallel implementations. Therefore, the problem size is fixed for each benchmark while the number of participating MPI processes is increased.

In the Kriging interpolation benchmark, the source dataset is evenly partitioned among all MPI processes along the row-major. The computation in each MPI process is purely local, i.e., there is no cross-process communication. The problem size of this benchmark is 171 MB consisting of 4 datasets. The output raster grid for each dataset has a consistent dimension of 1,440×720. The performance of the GPU cluster with K20 is projected based on the speedup of the single K20 vs. M2090 and we assume that the other specifications of the K20 GPU cluster is same to the Keeneland KIDS. From this figure, it can be found that all hybrid implementation can easily outperform the parallel implementation on CPU with GPU further better than MIC.

The input of the ISODATA is a high-resolution image of 18 GB with a dimension of 80,000×80,000 for three bands. The objective of this benchmark is to classify the image into 15 classes. For this benchmark, it can be found that the gap between the MIC processor and GPUs becomes quite small. One reason is that the FDR InfiniBand network on Beacon provides much higher bandwidth than the QDR InfiniBand network on Keeneland KIDS. The advantage of more efficient communication network on Beacon is further demonstrated when the number of participating processors is increased from 100 to 120.

In the Game of Life benchmark, the grid size is 32,768×32,768. The status of each cell in the grid will be updated for 100 iterations. By observing the performance results, it can be found that the strong scalability is demonstrated for MPI implementations on both CPUs and GPUs. For the MPI+MIC implementation, it is found that the performance does not scale quite well due to the communication overhead among MPI processes. Therefore, it is critical to keep a balance between computation and communication for achieving the best performance.

Conclusion

In our study, we have shown the potential for accelerating geospatial applications using parallel implementation on hybrid computer clusters. MPI+GPU and MPI+MIC parallel implementations of representative geospatial applications achieve significant performance improvement compared with the traditional MPI+CPU parallel. It is also found that the simple MPI-direct-host programming model on Intel MIC cluster can achieve a performance equivalent to the MPI+GPU model on GPU clusters when the same number of processors are allocated. An efficient cross-node communication network is still the key to achieve the strong scalability for parallel applications running on multiple nodes. In general, geospatial computation consists of the functional modules to process (1) vector geometric data, (2) network and graph data, (3) raster grid data, and (4) imagery data. A variety of research challenges remain in deploying heterogeneous computer architecture and systems to handle different data structure and geospatial computation problems in the future.

The paper on this research can be accessed at http://www.csce.uark.edu/~mqhuang/papers/2013_gis_hpcc.pdf.

Research Team Bios

Miaoqing Huang is an Assistant Professor at the Department of Computer Science and Computer Engineering, University of Arkansas. His research interests include operating system and infrastructure design for manycore computer system, hardware acceleration technologies (such as FPGA and GPU), and on-board cache design in nonvolatile memory-based solid-state drives (SSDs). He earned his doctoral degree in computer engineering from The George Washington University in 2009. He can be reached at [email protected]

Xuan Shi is an Assistant Professor at the Department of Geosciences, University of Arkansas. His research interests include Geoinformatics, Geospatial Cyberinfrastructure, High performance geocomputation among others. He earned his doctoral degree in geography from the West Virginia University in 2007. He can be reached at [email protected]

Haihang You is a Computational Scientist at the National Institute for Computational Sciences, University of Tennessee. Prior of joining NICS, he was a research associate at Innovative Computing Laboratory, Dept. of Electrical Engineering and Computer Science, University of Tennessee. His research interests are High Performance Computing, Performance Analysis and Evaluation, Compiler & Automatic Tuning and Optimization System, Linear Algebra, Iterative Adaptive Discontinuous Galerkin Finite Element Methods, Parallel I/O Tuning on Lustre and System Utilization Analysis and Improvement on a Supercomputer. He can be reached at [email protected]

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IBM Unveils Latest Achievements in AI Hardware

December 13, 2019

“The increased capabilities of contemporary AI models provide unprecedented recognition accuracy, but often at the expense of larger computational and energetic effort,” IBM Research wrote in a blog post. “Therefor Read more…

By Oliver Peckham

Focused on ‘Silicon TAM,’ Intel Puts Gary Patton, Former GlobalFoundries CTO, in Charge of Design Enablement

December 12, 2019

Change within Intel’s upper management – and to its company mission – has continued as a published report has disclosed that chip technology heavyweight Gary Patton, GlobalFoundries’ CTO and R&D SVP as well a Read more…

By Doug Black

Quantum Bits: Rigetti Debuts New Gates, D-Wave Cuts NEC Deal, AWS Jumps into the Quantum Pool

December 12, 2019

There’s been flurry of significant news in the quantum computing world. Yesterday, Rigetti introduced a new family of gates that reduces circuit depth required on some problems and D-Wave struck a deal with NEC to coll Read more…

By John Russell

How Formula 1 Used Cloud HPC to Build the Next Generation of Racing

December 12, 2019

Formula 1, Rob Smedley explained, is maybe the biggest racing spectacle in the world, with five hundred million fans tuning in for every race. Smedley, a chief engineer with Formula 1’s performance engineering and anal Read more…

By Oliver Peckham

RPI Powers Up ‘AiMOS’ AI Supercomputer

December 11, 2019

Designed to push the frontiers of computing chip and systems performance optimized for AI workloads, an 8 petaflops (Linpack) IBM Power9-based supercomputer has been unveiled in upstate New York that will be used by IBM Read more…

By Doug Black

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

GPU Scheduling and Resource Accounting: The Key to an Efficient AI Data Center

[Connect with LSF users and learn new skills in the IBM Spectrum LSF User Community!]

GPUs are the new CPUs

GPUs have become a staple technology in modern HPC and AI data centers. Read more…

At SC19: Developing a Digital Twin

December 11, 2019

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location to location. In such a world, there will also be a digital twin for each UAV in the fleet: a virtual model that will follow the UAV through its existence, evolving with time. Read more…

By Aaron Dubrow

Focused on ‘Silicon TAM,’ Intel Puts Gary Patton, Former GlobalFoundries CTO, in Charge of Design Enablement

December 12, 2019

Change within Intel’s upper management – and to its company mission – has continued as a published report has disclosed that chip technology heavyweight G Read more…

By Doug Black

Quantum Bits: Rigetti Debuts New Gates, D-Wave Cuts NEC Deal, AWS Jumps into the Quantum Pool

December 12, 2019

There’s been flurry of significant news in the quantum computing world. Yesterday, Rigetti introduced a new family of gates that reduces circuit depth require Read more…

By John Russell

RPI Powers Up ‘AiMOS’ AI Supercomputer

December 11, 2019

Designed to push the frontiers of computing chip and systems performance optimized for AI workloads, an 8 petaflops (Linpack) IBM Power9-based supercomputer has Read more…

By Doug Black

At SC19: Developing a Digital Twin

December 11, 2019

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location to location. In such a world, there will also be a digital twin for each UAV in the fleet: a virtual model that will follow the UAV through its existence, evolving with time. Read more…

By Aaron Dubrow

Intel’s Jim Clarke on its New Cryo-controller and why Intel isn’t Late to the Quantum Party

December 9, 2019

Intel today introduced the ‘first-of-its-kind’ cryo-controller chip for quantum computing and previewed a cryo-prober tool for characterizing quantum proces Read more…

By John Russell

On the Spack Track @SC19

December 5, 2019

At the annual supercomputing conference, SC19 in Denver, Colorado, there were Spack events each day of the conference. As a reflection of its grassroots heritage, nine sessions were planned by more than a dozen thought leaders from seven organizations, including three U.S. national Department of Energy (DOE) laboratories and Sylabs... Read more…

By Elizabeth Leake

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced com Read more…

By Tiffany Trader

AWS Debuts 7nm 2nd-Gen Graviton Arm Processor

December 3, 2019

The “x86 Big Bang,” in which market dominance of the venerable Intel CPU has exploded into fragments of processor options suited to varying workloads, has n Read more…

By Doug Black

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
CEJN
CJEN
DDN
DDN
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

Cerebras to Supply DOE with Wafer-Scale AI Supercomputing Technology

September 17, 2019

Cerebras Systems, which debuted its wafer-scale AI silicon at Hot Chips last month, has entered into a multi-year partnership with Argonne National Laboratory and Lawrence Livermore National Laboratory as part of a larger collaboration with the U.S. Department of Energy... Read more…

By Tiffany Trader

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

IBM Opens Quantum Computing Center; Announces 53-Qubit Machine

September 19, 2019

Gauging progress in quantum computing is a tricky thing. IBM yesterday announced the opening of the IBM Quantum Computing Center in New York, with five 20-qubit Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This