China Prepares for Quantum Age

By Tiffany Trader

January 24, 2014

Exascale isn’t the only international computing race currently underway. Around the world national interests are also scrambling to build quantum computers capable of making and breaking amazingly-complex codes.

Take China for example. Already home to the most powerful supercomputer in the world, Tianhe-2, researchers in China have set their sites on the holy grail of technology – the world’s first code-breaking quantum supercomputer.

News of the activity appeared in the South China Morning Post (SCMP) earlier this month.

The ability to break encryption schemes has long been a secret weapon of governments. It’s widely accepted that British interception of the Nazis’ “unbreakable” Enigma cipher codes advanced the end of World War II by two years. Code-breaking work arguably contributed more to the Allied war effort and eventual victory than the more prominent Manhattan Project.

Even the most secure encryption codes in existence today would be no match for the quantum computer. Banks, governments and militaries around the globe are keenly aware of this looming threat (or tool, depending on your perspective) and have made preparing for the quantum age a foremost priority.

Where traditional computing relies on a unit of information called a bit, quantum computing is based on quantum bits or qubits. Bits are expressed in binary form, ones and zeros, while a qubit can represent a zero, a one, or a combination of both states at the same time, a quantum property known as superposition. This endows these theoretical number crunchers with an inordinately high natural parallelism. Able to perform millions of calculations simultaneously, quantum computing machines would be orders of magnitude faster than classical computers for certain problem sets. The most famous of these killer apps is code-breaking.

Quantum computers have been predicted for some time, but they were not expected to be practical or productive for another two decades or more. It then came to light via documents leaked by Edward Snowden to The Washington Post that the US National Security Agency had been building “a cryptologically useful quantum computer [in] room-sized metal boxes,” but the technology was still some years away. The same documents revealed that while the NSA has many ways of accessing private communications via backdoors and other surreptitious means, for now, the strongest encryption algorithms are safe when deployed correctly.

On the Chinese front, the SCMP article states that “while there is no sign that China is close to developing a practical, working model, it has pulled out all the stops to build the ultimate code-breaker.” Leading universities, state research institutes and military labs are pursuing technologies that support the development of a practical quantum code-breaker with the most promising projects getting nearly unlimited funding dollars.

One such program has been tasked with generating the extreme environment needed to make quantum computing possible. The Steady High Magnetic Field Experimental Facility is housed in a three-story complex on the Hefei Science Island. Researchers at the facility are working to design and maintain a magnetic field at 45 Tesla or higher. So far, according to the Guinness World Records, the feat has only been achieved by the US-based National High Magnetic Field Laboratory.

Dr. Chen Hongwei, a researcher at the Chinese Academy of Sciences’ High Magnetic Field Laboratory and leader of the quantum computer project at the magnetic facility, is confident that strong magnetic fields could address some of the main challenges in quantum computing.

According to Chen, qubits are fragile and tend to clump together in clusters, which compromises their use as computing operands.

“You can’t do anything with a qubit if you can’t even find one,” he said. “However, under super-strong magnetic fields, the distance between qubits can be increased, making our jobs easier.”

Smaller-scale experiments undertaken at the lab have shown promising results. “If qubits can be tamed this way, the first quantum computer may be born inside a magnet,” Chen said.

The importance of building a quantum computer is such that the Chinese government funded 90 quantum related projects last year through the National Natural Science Foundation of China. Despite or perhaps because of these high stakes involved, there is much debate about the likelihood of current efforts blossoming into something useful. Professor Zhao Hongwu, a researcher with the CAS Institute of Physics on qubit storage materials and technology, thinks the first quantum computer could still be decades, perhaps even centuries, away.

It’s his take that the government is investing in so many different projects because no single one has any guarantee of success. “It is very likely that more than 99 percent of research will end up in failure,” notes Zhao, “But the work must be done, or we will never know which method works.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Cray+Azure: Can Cloud Propel Supercomputing?

October 23, 2017

Cray and Microsoft today announced they will offer dedicated Cray supercomputers (the XC and CS-Storm lines) inside the Azure platform allowing customers to run their HPC and AI applications alongside their other cloud w Read more…

By Tiffany Trader

2017 Gordon Bell Prize Finalists Named

October 23, 2017

The three finalists for this year’s Gordon Bell Prize in High Performance Computing have been announced. They include two papers on projects run on China’s Sunway TaihuLight system and a third paper on 3D image recon Read more…

By John Russell

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together about 30 participants from industry, government and academia t Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Cray+Azure: Can Cloud Propel Supercomputing?

October 23, 2017

Cray and Microsoft today announced they will offer dedicated Cray supercomputers (the XC and CS-Storm lines) inside the Azure platform allowing customers to run Read more…

By Tiffany Trader

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together ab Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Leading Solution Providers

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This