How Can Supercomputers Survive a Drought?

By Dr. Shaolei Ren

January 26, 2014

Water scarcity has been surfacing as an extremely critical issue worth addressing in the U.S. as well as around the globe nowadays. A McKinsey-led report shows that, by 2030, the global water demand is expected to exceed the supply by 40%. According to another recent report by The Congressional Research Service (CRS), more than 70% of the land area in the U.S. underwent drought condition during August, 2012.

When it comes to 2014, the condition has become even worse in some of the states: following a three-year dry period, California declared state-wide drought emergency. A report by NBC News on this drought quotes California Gov. Jerry Brown as saying, “perhaps the worst drought California has ever seen since records began being kept about 100 years ago”. Many such evidences of extended droughts and water scarcity have undoubtedly necessitated concerted approaches to tackling the global crisis and ensuring water sustainability.

Supercomputers are notorious for consuming a significant amount of electricity, but a less-known fact is that supercomputers are also extremely “thirsty” and consume a huge amount of water to cool down servers through cooling towers that are typically located on the roof of supercomputer facilities. While high-density servers packed in a supercomputer center can save space and/or costs, they also generate a large amount of heat which, if not properly removed, could damage the equipment and result in huge economic losses.

The high heat capacity makes water an ideal and energy-efficient medium to reject server heat into the environment through evaporation, an old yet effective cooling mechanism. According to Amazon’s James Hamilton, a 15MW data center could guzzle up to 360,000 gallons of water per day. The U.S. National Security Agency’s data center in Utah would require up to 1.7 million gallons of water per day, enough to satiate over 10,000 households’ water needs.

Although water consumption is related to energy consumption, they also differ from each other: due to time-varying water efficiency resulting from volatile outside temperatures, the same amount of server energy but consumed at different times may also result in different amount of water evaporation in cooling towers. In addition to onsite cooling towers, the enormous appetite for electricity also holds supercomputers accountable for offsite water consumption embedded in electricity production. As a matter of fact, electricity production accounts for the largest water withdrawal among all sectors in the U.S. While not all the water withdrawal is consumed or “lost” via evaporation, the national average water consumption for just one kWh electricity still reaches 1.8L/kWh, even excluding hydropower which itself is a huge water consumer.

Amid concerns over the tremendous amount of water required to run data centers and supercomputers, there have been an increasing interest in mitigating the water consumption. For example, Facebook and eBay have developed dashboard to monitor the water efficiency (Water Usage Efficiency or WUE in short) in run-time, while Google and NCAR-Wyoming Supercomputing Center (NWSC) are developing water-efficient cooling technologies, such as using outside air cooling, using recycled water and so on.  These approaches, however, are merely targeting facility or infrastructure improvement, and they require high upfront capital investment and/or suitable climate conditions.

Why should supercomputers really care about water consumption? Well, there are a good number of reasons. Water conservation will not only benefit supercomputers in receiving tax credits and saving a portion of their annual utility bills, but also improve sustainability of supercomputers and help it survive extended droughts which are more and more frequent in water-stressed areas such as California where many large data centers and supercomputers are located. Water conservation will also benefit supercomputers in acquiring green certification, fulfilling their social responsibilities.

Motivated by the dearth of thorough research in supercomputer water efficiency and urgency of water conservation, a group of researchers at Florida International University have recently been targeting the field of data center and supercomputer water conservation. Unlike the current water-saving approaches which primarily focus on improved “engineering” and exhibit several limitations (such as high upfront capital investment and suitable climate), the research group devises software-based approaches to mitigate water consumption in supercomputers by exploiting the inherent spatio-temporal variation of water efficiency. Such spatio-temporal variation of water efficiency comes from our mother nature for free: volatile temperature results in time-varying water efficiency, while heterogeneous supercomputer systems across different locations lead to spatio variation of water efficiency.

The research group finds that the spatio-temporal variation of water efficiency is also a perfect fit for supercomputers’ workload flexibility: migrating workloads to locations with higher water efficiency and/or deferring workloads to water-efficient times. Effectiveness of the approach has been demonstrated via extensive experiment studies, reducing water consumption by 20% with almost no compromise in other aspects such as service latency. The promising results mark the first step to make a far-reaching change in the process of achieving supercomputer sustainability through water conservation, yet without upfront capital investment or facility upgrades.

If you operate a supercomputer in water-stressed areas undergoing drought conditions, the software-based approach may help your supercomputer survive droughts without costing you a single cent on facility upgrades.

photo(1)About the Author

Shaolei Ren received his Ph.D. from the University of California, Los Angeles, in 2012 and is currently with Florida International University as an Assistant Professor, where he works on research teams that target the issues as described above. His research focuses on sustainable computing. He has written about sustainable HPC datacenters in the past, including for a featured selection for our “SC Research Highlights” from 2013, which can be found here.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Shuts Out RISC-V Software Support for GPUs 

September 23, 2022

Nvidia is not interested in bringing software support to its GPUs for the RISC-V architecture despite being an early adopter of the open-source technology in its GPU controllers. Nvidia has no plans to add RISC-V support for CUDA, which is the proprietary GPU software platform, a company representative... Read more…

Microsoft Closes Confidential Computing Loop with AMD’s Milan Chip

September 22, 2022

Microsoft shared details on how it uses an AMD technology to secure artificial intelligence as it builds out a secure AI infrastructure in its Azure cloud service. Microsoft has a strong relationship with Nvidia, but is also working with AMD's Epyc chips (including the new 3D VCache series), MI Instinct accelerators, and also... Read more…

Nvidia Introduces New Ada Lovelace GPU Architecture, OVX Systems, Omniverse Cloud

September 20, 2022

In his GTC keynote today, Nvidia CEO Jensen Huang launched another new Nvidia GPU architecture: Ada Lovelace, named for the legendary mathematician regarded as the first computer programmer. The company also announced tw Read more…

Nvidia’s Hopper GPUs Enter ‘Full Production,’ DGXs Delayed Until Q1

September 20, 2022

Just about six months ago, Nvidia’s spring GTC event saw the announcement of its hotly anticipated Hopper GPU architecture. Now, the GPU giant is announcing that Hopper-generation GPUs (which promise greater energy eff Read more…

NeMo LLM Service: Nvidia’s First Cloud Service Makes AI Less Vague

September 20, 2022

Nvidia is trying to uncomplicate AI with a cloud service that makes AI and its many forms of computing less vague and more conversational. The NeMo LLM service, which Nvidia called its first cloud service, adds a layer of intelligence and interactivity... Read more…

AWS Solution Channel

Shutterstock 1194728515

Simulating 44-Qubit quantum circuits using AWS ParallelCluster

Dr. Fabio Baruffa, Sr. HPC & QC Solutions Architect
Dr. Pavel Lougovski, Pr. QC Research Scientist
Tyson Jones, Doctoral researcher, University of Oxford

Introduction

Currently, an enormous effort is underway to develop quantum computing hardware capable of scaling to hundreds, thousands, and even millions of physical (non-error-corrected) qubits. Read more…

Microsoft/NVIDIA Solution Channel

Shutterstock 1166887495

Improving Insurance Fraud Detection using AI Running on Cloud-based GPU-Accelerated Systems

Insurance is a highly regulated industry that is evolving as the industry faces changing customer expectations, massive amounts of data, and increased regulations. A major issue facing the industry is tracking insurance fraud. Read more…

Nvidia Targets Computers for Robots in the Surgery Rooms

September 20, 2022

Nvidia is laying the groundwork for a future in which humans and robots will be collaborators in the surgery rooms at hospitals. The company announced a computer called IGX for Medical Devices, which will be populated in robots, image scanners and other computers and medical devices involved in patient care close to the point... Read more…

Nvidia Shuts Out RISC-V Software Support for GPUs 

September 23, 2022

Nvidia is not interested in bringing software support to its GPUs for the RISC-V architecture despite being an early adopter of the open-source technology in its GPU controllers. Nvidia has no plans to add RISC-V support for CUDA, which is the proprietary GPU software platform, a company representative... Read more…

Nvidia Introduces New Ada Lovelace GPU Architecture, OVX Systems, Omniverse Cloud

September 20, 2022

In his GTC keynote today, Nvidia CEO Jensen Huang launched another new Nvidia GPU architecture: Ada Lovelace, named for the legendary mathematician regarded as Read more…

Nvidia’s Hopper GPUs Enter ‘Full Production,’ DGXs Delayed Until Q1

September 20, 2022

Just about six months ago, Nvidia’s spring GTC event saw the announcement of its hotly anticipated Hopper GPU architecture. Now, the GPU giant is announcing t Read more…

NeMo LLM Service: Nvidia’s First Cloud Service Makes AI Less Vague

September 20, 2022

Nvidia is trying to uncomplicate AI with a cloud service that makes AI and its many forms of computing less vague and more conversational. The NeMo LLM service, which Nvidia called its first cloud service, adds a layer of intelligence and interactivity... Read more…

Nvidia Targets Computers for Robots in the Surgery Rooms

September 20, 2022

Nvidia is laying the groundwork for a future in which humans and robots will be collaborators in the surgery rooms at hospitals. The company announced a computer called IGX for Medical Devices, which will be populated in robots, image scanners and other computers and medical devices involved in patient care close to the point... Read more…

Survey Results: PsiQuantum, ORNL, and D-Wave Tackle Benchmarking, Networking, and More

September 19, 2022

The are many issues in quantum computing today – among the more pressing are benchmarking, networking and development of hybrid classical-quantum approaches. Read more…

HPC + AI Wall Street to Feature ‘Spooky’ Science for Financial Services

September 18, 2022

Albert Einstein famously described quantum mechanics as "spooky action at a distance" due to the non-intuitive nature of superposition and quantum entangled par Read more…

Analog Chips Find a New Lease of Life in Artificial Intelligence

September 17, 2022

The need for speed is a hot topic among participants at this week’s AI Hardware Summit – larger AI language models, faster chips and more bandwidth for AI machines to make accurate predictions. But some hardware startups are taking a throwback approach for AI computing to counter the more-is-better... Read more…

AWS Takes the Short and Long View of Quantum Computing

August 30, 2022

It is perhaps not surprising that the big cloud providers – a poor term really – have jumped into quantum computing. Amazon, Microsoft Azure, Google, and th Read more…

The Final Frontier: US Has Its First Exascale Supercomputer

May 30, 2022

In April 2018, the U.S. Department of Energy announced plans to procure a trio of exascale supercomputers at a total cost of up to $1.8 billion dollars. Over the ensuing four years, many announcements were made, many deadlines were missed, and a pandemic threw the world into disarray. Now, at long last, HPE and Oak Ridge National Laboratory (ORNL) have announced that the first of those... Read more…

US Senate Passes CHIPS Act Temperature Check, but Challenges Linger

July 19, 2022

The U.S. Senate on Tuesday passed a major hurdle that will open up close to $52 billion in grants for the semiconductor industry to boost manufacturing, supply chain and research and development. U.S. senators voted 64-34 in favor of advancing the CHIPS Act, which sets the stage for the final consideration... Read more…

Top500: Exascale Is Officially Here with Debut of Frontier

May 30, 2022

The 59th installment of the Top500 list, issued today from ISC 2022 in Hamburg, Germany, officially marks a new era in supercomputing with the debut of the first-ever exascale system on the list. Frontier, deployed at the Department of Energy’s Oak Ridge National Laboratory, achieved 1.102 exaflops in its fastest High Performance Linpack run, which was completed... Read more…

Chinese Startup Biren Details BR100 GPU

August 22, 2022

Amid the high-performance GPU turf tussle between AMD and Nvidia (and soon, Intel), a new, China-based player is emerging: Biren Technology, founded in 2019 and headquartered in Shanghai. At Hot Chips 34, Biren co-founder and president Lingjie Xu and Biren CTO Mike Hong took the (virtual) stage to detail the company’s inaugural product: the Biren BR100 general-purpose GPU (GPGPU). “It is my honor to present... Read more…

Newly-Observed Higgs Mode Holds Promise in Quantum Computing

June 8, 2022

The first-ever appearance of a previously undetectable quantum excitation known as the axial Higgs mode – exciting in its own right – also holds promise for developing and manipulating higher temperature quantum materials... Read more…

AMD’s MI300 APUs to Power Exascale El Capitan Supercomputer

June 21, 2022

Additional details of the architecture of the exascale El Capitan supercomputer were disclosed today by Lawrence Livermore National Laboratory’s (LLNL) Terri Read more…

Tesla Bulks Up Its GPU-Powered AI Super – Is Dojo Next?

August 16, 2022

Tesla has revealed that its biggest in-house AI supercomputer – which we wrote about last year – now has a total of 7,360 A100 GPUs, a nearly 28 percent uplift from its previous total of 5,760 GPUs. That’s enough GPU oomph for a top seven spot on the Top500, although the tech company best known for its electric vehicles has not publicly benchmarked the system. If it had, it would... Read more…

Leading Solution Providers

Contributors

Exclusive Inside Look at First US Exascale Supercomputer

July 1, 2022

HPCwire takes you inside the Frontier datacenter at DOE's Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tenn., for an interview with Frontier Project Direc Read more…

AMD Opens Up Chip Design to the Outside for Custom Future

June 15, 2022

AMD is getting personal with chips as it sets sail to make products more to the liking of its customers. The chipmaker detailed a modular chip future in which customers can mix and match non-AMD processors in a custom chip package. "We are focused on making it easier to implement chips with more flexibility," said Mark Papermaster, chief technology officer at AMD during the analyst day meeting late last week. Read more…

Intel Reiterates Plans to Merge CPU, GPU High-performance Chip Roadmaps

May 31, 2022

Intel reiterated it is well on its way to merging its roadmap of high-performance CPUs and GPUs as it shifts over to newer manufacturing processes and packaging technologies in the coming years. The company is merging the CPU and GPU lineups into a chip (codenamed Falcon Shores) which Intel has dubbed an XPU. Falcon Shores... Read more…

Nvidia Shuts Out RISC-V Software Support for GPUs 

September 23, 2022

Nvidia is not interested in bringing software support to its GPUs for the RISC-V architecture despite being an early adopter of the open-source technology in its GPU controllers. Nvidia has no plans to add RISC-V support for CUDA, which is the proprietary GPU software platform, a company representative... Read more…

Nvidia, Intel to Power Atos-Built MareNostrum 5 Supercomputer

June 16, 2022

The long-troubled, hotly anticipated MareNostrum 5 supercomputer finally has a vendor: Atos, which will be supplying a system that includes both Nvidia and Inte Read more…

UCIe Consortium Incorporates, Nvidia and Alibaba Round Out Board

August 2, 2022

The Universal Chiplet Interconnect Express (UCIe) consortium is moving ahead with its effort to standardize a universal interconnect at the package level. The c Read more…

Using Exascale Supercomputers to Make Clean Fusion Energy Possible

September 2, 2022

Fusion, the nuclear reaction that powers the Sun and the stars, has incredible potential as a source of safe, carbon-free and essentially limitless energy. But Read more…

Is Time Running Out for Compromise on America COMPETES/USICA Act?

June 22, 2022

You may recall that efforts proposed in 2020 to remake the National Science Foundation (Endless Frontier Act) have since expanded and morphed into two gigantic bills, the America COMPETES Act in the U.S. House of Representatives and the U.S. Innovation and Competition Act in the U.S. Senate. So far, efforts to reconcile the two pieces of legislation have snagged and recent reports... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire