How Can Supercomputers Survive a Drought?

By Dr. Shaolei Ren

January 26, 2014

Water scarcity has been surfacing as an extremely critical issue worth addressing in the U.S. as well as around the globe nowadays. A McKinsey-led report shows that, by 2030, the global water demand is expected to exceed the supply by 40%. According to another recent report by The Congressional Research Service (CRS), more than 70% of the land area in the U.S. underwent drought condition during August, 2012.

When it comes to 2014, the condition has become even worse in some of the states: following a three-year dry period, California declared state-wide drought emergency. A report by NBC News on this drought quotes California Gov. Jerry Brown as saying, “perhaps the worst drought California has ever seen since records began being kept about 100 years ago”. Many such evidences of extended droughts and water scarcity have undoubtedly necessitated concerted approaches to tackling the global crisis and ensuring water sustainability.

Supercomputers are notorious for consuming a significant amount of electricity, but a less-known fact is that supercomputers are also extremely “thirsty” and consume a huge amount of water to cool down servers through cooling towers that are typically located on the roof of supercomputer facilities. While high-density servers packed in a supercomputer center can save space and/or costs, they also generate a large amount of heat which, if not properly removed, could damage the equipment and result in huge economic losses.

The high heat capacity makes water an ideal and energy-efficient medium to reject server heat into the environment through evaporation, an old yet effective cooling mechanism. According to Amazon’s James Hamilton, a 15MW data center could guzzle up to 360,000 gallons of water per day. The U.S. National Security Agency’s data center in Utah would require up to 1.7 million gallons of water per day, enough to satiate over 10,000 households’ water needs.

Although water consumption is related to energy consumption, they also differ from each other: due to time-varying water efficiency resulting from volatile outside temperatures, the same amount of server energy but consumed at different times may also result in different amount of water evaporation in cooling towers. In addition to onsite cooling towers, the enormous appetite for electricity also holds supercomputers accountable for offsite water consumption embedded in electricity production. As a matter of fact, electricity production accounts for the largest water withdrawal among all sectors in the U.S. While not all the water withdrawal is consumed or “lost” via evaporation, the national average water consumption for just one kWh electricity still reaches 1.8L/kWh, even excluding hydropower which itself is a huge water consumer.

Amid concerns over the tremendous amount of water required to run data centers and supercomputers, there have been an increasing interest in mitigating the water consumption. For example, Facebook and eBay have developed dashboard to monitor the water efficiency (Water Usage Efficiency or WUE in short) in run-time, while Google and NCAR-Wyoming Supercomputing Center (NWSC) are developing water-efficient cooling technologies, such as using outside air cooling, using recycled water and so on.  These approaches, however, are merely targeting facility or infrastructure improvement, and they require high upfront capital investment and/or suitable climate conditions.

Why should supercomputers really care about water consumption? Well, there are a good number of reasons. Water conservation will not only benefit supercomputers in receiving tax credits and saving a portion of their annual utility bills, but also improve sustainability of supercomputers and help it survive extended droughts which are more and more frequent in water-stressed areas such as California where many large data centers and supercomputers are located. Water conservation will also benefit supercomputers in acquiring green certification, fulfilling their social responsibilities.

Motivated by the dearth of thorough research in supercomputer water efficiency and urgency of water conservation, a group of researchers at Florida International University have recently been targeting the field of data center and supercomputer water conservation. Unlike the current water-saving approaches which primarily focus on improved “engineering” and exhibit several limitations (such as high upfront capital investment and suitable climate), the research group devises software-based approaches to mitigate water consumption in supercomputers by exploiting the inherent spatio-temporal variation of water efficiency. Such spatio-temporal variation of water efficiency comes from our mother nature for free: volatile temperature results in time-varying water efficiency, while heterogeneous supercomputer systems across different locations lead to spatio variation of water efficiency.

The research group finds that the spatio-temporal variation of water efficiency is also a perfect fit for supercomputers’ workload flexibility: migrating workloads to locations with higher water efficiency and/or deferring workloads to water-efficient times. Effectiveness of the approach has been demonstrated via extensive experiment studies, reducing water consumption by 20% with almost no compromise in other aspects such as service latency. The promising results mark the first step to make a far-reaching change in the process of achieving supercomputer sustainability through water conservation, yet without upfront capital investment or facility upgrades.

If you operate a supercomputer in water-stressed areas undergoing drought conditions, the software-based approach may help your supercomputer survive droughts without costing you a single cent on facility upgrades.

photo(1)About the Author

Shaolei Ren received his Ph.D. from the University of California, Los Angeles, in 2012 and is currently with Florida International University as an Assistant Professor, where he works on research teams that target the issues as described above. His research focuses on sustainable computing. He has written about sustainable HPC datacenters in the past, including for a featured selection for our “SC Research Highlights” from 2013, which can be found here.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Data West Brings Technology Leaders to SDSC

December 6, 2018

Data and technology enthusiasts from around the world descended upon the San Diego Supercomputing Center (SDSC) for the third annual Data West conference, which is taking place this week on the campus of the University o Read more…

By Alex Woodie

Topology Can Help Us Find Patterns in Weather

December 6, 2018

Topology--–the study of shapes-- seems to be all the rage. You could even say that data has shape, and shape matters. Shapes are comfortable and familiar concepts, so it is intriguing to see that many applications are Read more…

By James Reinders

What’s New in HPC Research: Automatic Energy Efficiency, DNA Data Analysis, Post-Exascale & More

December 6, 2018

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

AI Can Be Scary. But Choosing the Wrong Partners Can Be Mortifying!

As you continue to dive deeper into AI, you will discover it is more than just deep learning. AI is an extremely complex set of machine learning, deep learning, reinforcement, and analytics algorithms with varying compute, storage, memory, and communications needs. Read more…

IBM Accelerated Insights

Five Steps to Building a Data Strategy for AI

Our data-centric world is driving many organizations to apply advanced analytics that use artificial intelligence (AI). AI provides intelligent answers to challenging business questions. AI also enables highly personalized user experiences, built when data scientists and analysts learn new information from data that would otherwise go undetected using traditional analytics methods. Read more…

Zettascale by 2035? China Thinks So

December 6, 2018

Exascale machines (of at least a 1 exaflops peak) are anticipated to arrive by around 2020, a few years behind original predictions; and given extreme-scale performance challenges are not getting any easier, it makes sense that researchers are already looking ahead to the next big 1,000x performance goal post: zettascale computing. Read more…

By Tiffany Trader

Topology Can Help Us Find Patterns in Weather

December 6, 2018

Topology--–the study of shapes-- seems to be all the rage. You could even say that data has shape, and shape matters. Shapes are comfortable and familiar conc Read more…

By James Reinders

Zettascale by 2035? China Thinks So

December 6, 2018

Exascale machines (of at least a 1 exaflops peak) are anticipated to arrive by around 2020, a few years behind original predictions; and given extreme-scale performance challenges are not getting any easier, it makes sense that researchers are already looking ahead to the next big 1,000x performance goal post: zettascale computing. Read more…

By Tiffany Trader

Robust Quantum Computers Still a Decade Away, Says Nat’l Academies Report

December 5, 2018

The National Academies of Science, Engineering, and Medicine yesterday released a report – Quantum Computing: Progress and Prospects – whose optimism about Read more…

By John Russell

Revisiting the 2008 Exascale Computing Study at SC18

November 29, 2018

A report published a decade ago conveyed the results of a study aimed at determining if it were possible to achieve 1000X the computational power of the the Read more…

By Scott Gibson

AWS Debuts Lustre as a Service, Accelerates Data Transfer

November 28, 2018

From the Amazon re:Invent main stage in Las Vegas today, Amazon Web Services CEO Andy Jassy introduced Amazon FSx for Lustre, citing a growing body of applicati Read more…

By Tiffany Trader

AWS Launches First Arm Cloud Instances

November 28, 2018

AWS, a macrocosm of the emerging high-performance technology landscape, wants to be everywhere you want to be and offer everything you want to use (or at least Read more…

By Doug Black

Move Over Lustre & Spectrum Scale – Here Comes BeeGFS?

November 26, 2018

Is BeeGFS – the parallel file system with European roots – on a path to compete with Lustre and Spectrum Scale worldwide in HPC environments? Frank Herold Read more…

By John Russell

DOE Under Secretary for Science Paul Dabbar Interviewed at SC18

November 21, 2018

During the 30th annual SC conference in Dallas last week, SC18 hosted U.S. Department of Energy Under Secretary for Science Paul M. Dabbar. In attendance Nov. 13-14, Dabbar delivered remarks at the Top500 panel, met with a number of industry stakeholders and toured the show floor. He also met with HPCwire for an interview, where we discussed the role of the DOE in advancing leadership computing. Read more…

By Tiffany Trader

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

Google Releases Machine Learning “What-If” Analysis Tool

September 12, 2018

Training machine learning models has long been time-consuming process. Yesterday, Google released a “What-If Tool” for probing how data point changes affect a model’s prediction. The new tool is being launched as a new feature of the open source TensorBoard web application... Read more…

By John Russell

The Convergence of Big Data and Extreme-Scale HPC

August 31, 2018

As we are heading towards extreme-scale HPC coupled with data intensive analytics like machine learning, the necessary integration of big data and HPC is a curr Read more…

By Rob Farber

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This