HPC Lessons for the Wider Enterprise World

By Nicole Hemsoth

January 28, 2014

Is HPC so specialized that the lessons learned from large-scale infrastructure (at all layers) are not transferrable to mirrored challenges in large-scale enterprise settings?

Put another way, are the business-critical problems that companies tackle really so vastly different than the associated hardware and software issues that large supercomputing centers have already faced and in many areas, overcome? Granted, there is already a significant amount of HPC to be found in enterprise datacenters worldwide in a number of areas—oil and gas, financial services, the life sciences, government and more. But as everything in technology seems bent on convergence, is there not a wider application for HPC-driven technologies in an expanding set of markets?

This is the first part of a series of focused pieces around these framing questions about HPC’s map into the wider world.  The sections of our extended special feature will target HPC-to-enterprise lessons in terms of hardware and infrastructure; software and applications; management at scale; cloud computing; big data; accelerators and more. But to kick things off, we wanted to build consensus around some of the main themes and ideas behind any movement that’s happening (or needs to) as HPC lessons trickle into the scale, efficiency, performance and data-conscious world of the modern enterprise.

In some circles, HPC is viewed from afar as an academic-only landscape, dotted with rare peaks representing actual enterprise use. Of course, those inside supercomputing know that this portrait is limited—that HPC has a strong foothold in the areas mentioned above, and tremendous potential to reshape new areas that either thought HPC was out of reach or are using HPC but simply don’t use the term. What is needed is a comprehensive view of how HPC can be broadly useful to critical segments enterprise IT…and that’s what we ntend to offer over the next couple of weeks.

The answer about whether or not there are a multitude of lessons HPC can teach the wider enterprise world, at least according to those we’ve spoken with for our the series on this subject, is resounding and positive. If there’s any disagreement, it’s on how those lessons translate, which are truly unique in the HPC experience, and of course, which hold the most promise for improved productivity, competitiveness or even application area.

Addison Snell, CEO of Intersect360 Research, whose research group follows the overlap between enterprise and HPC, made some parallels to put the question in context. “Traditionally, one of the characteristics that separated HPC from enterprise computing was that HPC featured jobs that would run to completion, and there would be a benefit in completing them faster, such as running a weather forecast, simulating a crash test, or searching for proteins that fit together with a given molecule.” However, he says by contrast, enterprise environments are designed to run in steady state (email systems, CRM databases, etc.). “HPC purchases would tend to be driven by performance, with relatively faster adoption of new technologies, while enterprise computing was driven by reliability and new technology adoption with slower technology adoption.”

“Early adopters and bellwethers in high performance computing are always the first to encounter new challenges as they push the limits of computation and data management,” Herb Schultz from IBM’s Technical Computing and Analytics group argued.  He says that many of the challenges faced in the world of high performance computing “later come to haunt the broader commercial IT community.” “How first movers respond to challenges with new technologies and improved techniques establishes a proven foundation that the next waves of users can exploit.”

As Fritz Ferstl, CTO at Univa told us, there are essentially three “divisions” of in the HPC industry. There are the national labs and big science organizations; enterprise commercial HPC (as found in the expected verticals, including oil and gas, financial services, life sciences, etc.); and there is “a third not often recognized as HPC but rather as data-centric analysis, also known as big data.”

Ferstl says that while the lab-level HPC category is “specific in that its leading edge requires tightly coupled architectures with the densest network interconnects, which drive up cost and complexity. They are geared toward running few ultra-large applications that demand aggregate memory and would take unacceptable amounts of runtime if not executed on such large systems.” One step away from this is the commercial sectors that rely on HPC for their competitive edge. Of these, Ferstl notes whether its new reservoirs of oil and gas being explored, next generation products like cars or airplanes being designed and tested, or innovative drugs being discovered, “there would be no progress in any of these cases and many more if it wasn’t for HPC as a key instrument for investigation, design, development, experimentation and validation.”

But final on his list—and crucial to the enterprise transition (and HPC’s lessons to teach it) is the heavy subject of data. What’s really driving this forward motion of HPC tech into the enterprise is that buzzword we just can’t get away from these days. Some might argue that the trend has actually been one of the best things that’s happened for HPC’s ability to propel into the wider enterprise world.

Snell commented that, “today, especially with big data analytics, more companies are encountering performance-sensitive applications that run to completion—at least in terms of iterations.” He said his research has revealed that new categories of non-HPC enterprise users are emerging, all of whom are considering performance and scalability as top purchase criteria. “In some cases,” he said, “these enterprises can be just as likely to explore new technologies as HPC users have been for years.”

Some argue that in general, aside from being a question of data pressures, business need, and competitive edge, the real lessons HPC can teach are about talent and R&D capability. As Paul Dlugosch, Automata product director at Micron described, “One of the first lessons that come to mind is that people matter. While the HPC industry often celebrates our accomplishments on the basis of technical and performance benchmarks, the cost of achieving those benchmarks are often not discussed.  The cost of system and semiconductor development can be easy enough to quantify.  It is far more difficult, though, to determine the ‘use’ cost of advanced technologies. “While the raw power of our semiconductors and systems is immense it is the organic part of the system, the human being– that is emerging as a significant bottleneck,” said Dlugosch.

“Fully exploiting the parallelism that exists in many high performance computing systems continues to absorb incredible amounts of human resources,” he argued. “Given the large scale of commercial/enterprise data centers, it is just as important to pay close attention to this human factor.  The HPC industry is certainly aware of this problem and is developing new architectures, tools and methodologies to improve human productivity. As commercial and enterprise data centers grow in capability and scale it will become just as important to consider the productivity of the humans involved in system programming, management and scaling.”

It should be noted that on any level of this question, it’s not a clear matter of teaching from the top to bottom. While HPC has solved a number of problems in some of the most challenging data and compute environment, especially in terms of scale, data movement, application complexity and elsewhere, there are elements that can filter from the enterprise setting to HPC—even that “big national lab” variety Ferstl describes.

There is general agreement that there are multiple lessons that high performance computing can carry into mainstream enterprise environments, no matter what vertical is involved. But on the flipside, there has been general agreement that many innovations are spinning out of the new class of enterprise environments—that the web scale companies with their bare-bones hardware running open source, natively developed, and purpose-built, nimble applications—have something to offer the supercomputing world as well.

Jason Stowe, CEO of HPC cloud company, Cycle Computing put it best when he told us, “We in HPC pay attention to the fastest systems in the world: the fastest CPUs, interconnects, and benchmarks. From petaflops to petabytes, we [in HPC] publish and analyze these numbers unlike any other industry…While we’ll continue to measure things like LINPACK, utilization, and queue wait times, we’re now looking at things like Dollars per Unit Science, and Dollar per Simulation, which ironically, are lessons that has been learned from enterprise.”

From the people who power both enterprise and HPC systems to the functional elements of the machines and how they differ, there are just as many new questions that emerge from the first—what can HPC lend to large-scale business operations?

Stay tuned over the next two weeks as this series expands and hones in on specific issues and topics that influence how enterprises will look to HPC for answers to solving scale, data, management and other challenges.

CONTINUE to PART II — “HPC Roots Feed Big Data Branches”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 8, 2016)

December 8, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Qualcomm Targets Intel Datacenter Dominance with 10nm ARM-based Server Chip

December 8, 2016

Claiming no less than a reshaping of the future of Intel-dominated datacenter computing, Qualcomm Technologies, the market leader in smartphone chips, announced the forthcoming availability of what it says is the world’s first 10nm processor for servers, based on ARM Holding’s chip designs. Read more…

By Doug Black

Which Schools Produce the Top Coders in the World?

December 8, 2016

Ever wonder which universities worldwide produce the best coders? The answers may surprise you, at least as judged by the results of a competition posted yesterday on the HackerRank blog. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

Leading Solution Providers

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This