HPC Lessons for the Wider Enterprise World

By Nicole Hemsoth

January 28, 2014

Is HPC so specialized that the lessons learned from large-scale infrastructure (at all layers) are not transferrable to mirrored challenges in large-scale enterprise settings?

Put another way, are the business-critical problems that companies tackle really so vastly different than the associated hardware and software issues that large supercomputing centers have already faced and in many areas, overcome? Granted, there is already a significant amount of HPC to be found in enterprise datacenters worldwide in a number of areas—oil and gas, financial services, the life sciences, government and more. But as everything in technology seems bent on convergence, is there not a wider application for HPC-driven technologies in an expanding set of markets?

This is the first part of a series of focused pieces around these framing questions about HPC’s map into the wider world.  The sections of our extended special feature will target HPC-to-enterprise lessons in terms of hardware and infrastructure; software and applications; management at scale; cloud computing; big data; accelerators and more. But to kick things off, we wanted to build consensus around some of the main themes and ideas behind any movement that’s happening (or needs to) as HPC lessons trickle into the scale, efficiency, performance and data-conscious world of the modern enterprise.

In some circles, HPC is viewed from afar as an academic-only landscape, dotted with rare peaks representing actual enterprise use. Of course, those inside supercomputing know that this portrait is limited—that HPC has a strong foothold in the areas mentioned above, and tremendous potential to reshape new areas that either thought HPC was out of reach or are using HPC but simply don’t use the term. What is needed is a comprehensive view of how HPC can be broadly useful to critical segments enterprise IT…and that’s what we ntend to offer over the next couple of weeks.

The answer about whether or not there are a multitude of lessons HPC can teach the wider enterprise world, at least according to those we’ve spoken with for our the series on this subject, is resounding and positive. If there’s any disagreement, it’s on how those lessons translate, which are truly unique in the HPC experience, and of course, which hold the most promise for improved productivity, competitiveness or even application area.

Addison Snell, CEO of Intersect360 Research, whose research group follows the overlap between enterprise and HPC, made some parallels to put the question in context. “Traditionally, one of the characteristics that separated HPC from enterprise computing was that HPC featured jobs that would run to completion, and there would be a benefit in completing them faster, such as running a weather forecast, simulating a crash test, or searching for proteins that fit together with a given molecule.” However, he says by contrast, enterprise environments are designed to run in steady state (email systems, CRM databases, etc.). “HPC purchases would tend to be driven by performance, with relatively faster adoption of new technologies, while enterprise computing was driven by reliability and new technology adoption with slower technology adoption.”

“Early adopters and bellwethers in high performance computing are always the first to encounter new challenges as they push the limits of computation and data management,” Herb Schultz from IBM’s Technical Computing and Analytics group argued.  He says that many of the challenges faced in the world of high performance computing “later come to haunt the broader commercial IT community.” “How first movers respond to challenges with new technologies and improved techniques establishes a proven foundation that the next waves of users can exploit.”

As Fritz Ferstl, CTO at Univa told us, there are essentially three “divisions” of in the HPC industry. There are the national labs and big science organizations; enterprise commercial HPC (as found in the expected verticals, including oil and gas, financial services, life sciences, etc.); and there is “a third not often recognized as HPC but rather as data-centric analysis, also known as big data.”

Ferstl says that while the lab-level HPC category is “specific in that its leading edge requires tightly coupled architectures with the densest network interconnects, which drive up cost and complexity. They are geared toward running few ultra-large applications that demand aggregate memory and would take unacceptable amounts of runtime if not executed on such large systems.” One step away from this is the commercial sectors that rely on HPC for their competitive edge. Of these, Ferstl notes whether its new reservoirs of oil and gas being explored, next generation products like cars or airplanes being designed and tested, or innovative drugs being discovered, “there would be no progress in any of these cases and many more if it wasn’t for HPC as a key instrument for investigation, design, development, experimentation and validation.”

But final on his list—and crucial to the enterprise transition (and HPC’s lessons to teach it) is the heavy subject of data. What’s really driving this forward motion of HPC tech into the enterprise is that buzzword we just can’t get away from these days. Some might argue that the trend has actually been one of the best things that’s happened for HPC’s ability to propel into the wider enterprise world.

Snell commented that, “today, especially with big data analytics, more companies are encountering performance-sensitive applications that run to completion—at least in terms of iterations.” He said his research has revealed that new categories of non-HPC enterprise users are emerging, all of whom are considering performance and scalability as top purchase criteria. “In some cases,” he said, “these enterprises can be just as likely to explore new technologies as HPC users have been for years.”

Some argue that in general, aside from being a question of data pressures, business need, and competitive edge, the real lessons HPC can teach are about talent and R&D capability. As Paul Dlugosch, Automata product director at Micron described, “One of the first lessons that come to mind is that people matter. While the HPC industry often celebrates our accomplishments on the basis of technical and performance benchmarks, the cost of achieving those benchmarks are often not discussed.  The cost of system and semiconductor development can be easy enough to quantify.  It is far more difficult, though, to determine the ‘use’ cost of advanced technologies. “While the raw power of our semiconductors and systems is immense it is the organic part of the system, the human being– that is emerging as a significant bottleneck,” said Dlugosch.

“Fully exploiting the parallelism that exists in many high performance computing systems continues to absorb incredible amounts of human resources,” he argued. “Given the large scale of commercial/enterprise data centers, it is just as important to pay close attention to this human factor.  The HPC industry is certainly aware of this problem and is developing new architectures, tools and methodologies to improve human productivity. As commercial and enterprise data centers grow in capability and scale it will become just as important to consider the productivity of the humans involved in system programming, management and scaling.”

It should be noted that on any level of this question, it’s not a clear matter of teaching from the top to bottom. While HPC has solved a number of problems in some of the most challenging data and compute environment, especially in terms of scale, data movement, application complexity and elsewhere, there are elements that can filter from the enterprise setting to HPC—even that “big national lab” variety Ferstl describes.

There is general agreement that there are multiple lessons that high performance computing can carry into mainstream enterprise environments, no matter what vertical is involved. But on the flipside, there has been general agreement that many innovations are spinning out of the new class of enterprise environments—that the web scale companies with their bare-bones hardware running open source, natively developed, and purpose-built, nimble applications—have something to offer the supercomputing world as well.

Jason Stowe, CEO of HPC cloud company, Cycle Computing put it best when he told us, “We in HPC pay attention to the fastest systems in the world: the fastest CPUs, interconnects, and benchmarks. From petaflops to petabytes, we [in HPC] publish and analyze these numbers unlike any other industry…While we’ll continue to measure things like LINPACK, utilization, and queue wait times, we’re now looking at things like Dollars per Unit Science, and Dollar per Simulation, which ironically, are lessons that has been learned from enterprise.”

From the people who power both enterprise and HPC systems to the functional elements of the machines and how they differ, there are just as many new questions that emerge from the first—what can HPC lend to large-scale business operations?

Stay tuned over the next two weeks as this series expands and hones in on specific issues and topics that influence how enterprises will look to HPC for answers to solving scale, data, management and other challenges.

CONTINUE to PART II — “HPC Roots Feed Big Data Branches”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

HPC Financial Update (Feb. 2017)

February 22, 2017

In this recurring feature, we’ll provide you with financial highlights from companies in the HPC industry. Check back in regularly for an updated list with the most pertinent fiscal information. Read more…

By Thomas Ayres

Rethinking HPC Platforms for ‘Second Gen’ Applications

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. Read more…

By John Russell

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This