UberCloud Marketplace for HPC as a Service Goes Live

By Wolfgang Gentzsch and Burak Yenier

January 29, 2014

UberCloud is the online community and marketplace where engineers and scientists can discover, try and buy the computing power and expertise on demand they need for their computational and data-intensive tasks.

With the limits of their desktop workstations often unable to provide enough computing power and memory, simulations taking too long, and the number of jobs too small to get quality results, engineers and scientists are looking for additional computing power beyond their desktop workstations. The UberCloud Marketplace provides access to a wide variety of computing providers, software vendors, enabling tools, and independent experts to simplify and ease the search for the most suitable service providers and expertise, out of hundreds that joined UberCloud in the last 18 months.

The process is simple. End-users register at the UberCloud website and complete a form to “Request a Quote from Resource Providers”. They provide information about their application, software and licenses, network interconnect, main memory per node, number of parallel cores, total CPU usage, MIC/GPUs needed, storage, remote visualization, and instructions about timing, urgency, and location of resources. And they can ask any question via UberCloud’s LiveChat feature. Then, the UberCloud takes care of the reset: automatically searching for suitable resource providers; collecting up to three quotes and sending them to the end-user; then the end-user is free to contact any or all of them to discuss the details. That’s it.

UberCloud Marketplace Video

About the UberCloud

Successful companies use high performance computing to build better products, faster, cheaper. They have the options to use desktop workstation, HPC cluster, and cloud computing resources. For organizations looking for ways to speed up their product design and development cycles, or increase productivity of their engineers and researchers, the UberCloud helps to understand how they can access high performance computers at professional data centers.

The UberCloud started in July 2012 with the free voluntary HPC Experiment which today has over 1000 participating organizations and individuals, from 68 countries. We believe that on demand access to remote computing resources (like HPC Clouds) will become an indispensable part of the engineers and scientists R&D work in the near future, for organization in HPC, computational fluid dynamics, finite element material analysis, multi-physics, chemistry, life sciences, biology, big data, and others.

To explore the challenges of the end-to-end process for an end-user to access and use remote computing resources, we are building “Teams of Four”, i.e. industry end-user, software provider, resource provider, and HPC expert, to work together on the end-user’s application, defining the requirements, getting the licenses and implementing the software on the remote system, running and monitoring it, getting the results back to the end-user, and writing a short case study about their experience, lessons learned, and recommendations, for the benefit of our community. So far, we were able to build 125 international teams and published the UberCloud Compendium with the 25 best case studies about CAE in the Cloud, sponsored by Intel. We invite everybody to join the UberCloud HPC Experiment.

In addition, the UberCloud offers a services directory, case study discussion forums, technology and services webinars, a monthly newsletter, and other detailed information, to discover how to utilize HPC as a Service. And finally, for those who are ready to use HPC as a Service in production, the UberCloud now offers the public marketplace for engineers, scientists, and their service providers.

Why Do We Need an HPC Marketplace?

The benefits of using HPC within design and development processes can be huge; such as better quality products; high Return on Investment (ROI); reducing product failure early in design; and shorten time to market. Potentially, this leads to increased competitiveness and innovation. Why then are many engineers and scientists running simulations just on their workstations, although many are regularly dissatisfied with the performance? The main reason is that the other alternatives are still coming with a lot of challenges.

The first alternative of buying an HPC server comes with high Total Cost of Ownership (TCO) as has been demonstrated by IDC already in 2007: in addition to server cost, expenses for staffing, training, software, downtime, and maintenance easily sum up to the ten-fold of the server cost over three years. Also, there are often long and painful internal procurement and approval processes. And for many, the ROI is not clear, although it is expected to be huge according to a recent IDC study on ROI in HPC.

The second alternative is recently offered by cloud computing. HPC in the Cloud (or HPC as a Service) allows engineers and scientists to continue using their own desktop system for daily design and development, and to submit (burst) the larger, more complex, time-consuming jobs into the cloud. Benefits of HPC Cloud (in addition to HPC in general) are among others on-demand access to ‘infinite’ resources, pay per use, reduced capital expenditure (CAPEX), greater business agility, and dynamically scaling resources up and down as needed.

However, HPC as a Service (in the Cloud) comes with challenges too: it is a new business and working paradigm, for the manager as well as for the engineer; security, privacy, and trust in service providers is an issue; conservative software licensing is only slowly including the pay-per-use service model; Internet bandwidth is often not able to accommodate the heavy data transfer needs; unpredictable costs of cloud computing can be a major problem in securing a budget for a given project; and there is often a lack of easy, intuitive self-service access and use of cloud resources.

And here comes the UberCloud community and marketplace which provides a platform for engineers and researchers to discover, explore, and understand the end-to-end process of accessing and using HPC Cloud resources, and to identify and resolve the roadblocks as described above. After recognizing the strategic benefits and implications for their business, end-users then can buy HPC as a Service, on demand. The marketplace assures best matching of resources from the many participating providers with the end-user’s requirements, and then offering a selection of suitable resource providers to the end-user.

Final UberCloud Marketplace figure1

Fig. 1 – The image on the right shows the temperature field of the room, while the left image shows the velocity field at a certain time of the transient simulation.

UberCloud Case Study: Fluid Dynamics Simulation with Heat Transfer in the Cloud

In many engineering problems fluid dynamics is coupled with heat transfer and many other multiphysics scenarios. The simulation produces large numerical models to be solved, so that big computational power is required in order for simulation cycles to be affordable. For SME companies in particular it is hard to implement this kind of technology in-house, because of its high investment cost and the IT specialization needed.

Biscarri Consultoria in Spain decided to explore the capabilities of cloud computing for performing highly coupled computational mechanics simulations, as an alternative to the acquisition of new computing servers to increase the computing power available. UberCloud Team 30 consisted of members Lluís M. Biscarri and Pierre Lafortune from Biscarri Consultoria in Spain, Wibke Sudholt and Nicola Fantini from CloudBroker GmbH in Switzerland, Joël Cugnoni, researcher and developer of CAELinux, and Peter Råback from CSC in Finland. CloudBroker used Amazon’s IaaS cloud offerings EC2 for compute and S3 for storage resources for this experiment.

The validation case was a room with a cold air inlet on the roof, a warm section on the floor and an outlet on a lateral wall near the floor. The initial air temperature was 25ºC. The submission of jobs to be run at AWS was done through the web interface of the CloudBroker Platform. The team’s case study reports quite some challenges which had to be overcome before the jobs ran smoothly on AWS, details are described in the UberCloud Compendium. Simulation results are shown in Figures 1 and 2.

Final UberCloud Marketplace figure2

Fig. 2 – Streamline on the inlet section.

“The main lesson learned at Biscarri Consultoria arising from participation in the UberCloud Experiment is that collaborative work over the Internet, using on-line resources like cloud computing hardware, Open Source software such as Elmer and CAElinux, and middleware platforms like CloudBroker, is a very interesting alternative to in-house calculation servers,” said Lluís Biscarri, Director at Biscarri Consultoria SL. “A backbone network such as 10Gbit Ethernet connecting computational nodes of a cloud computing platform seems not to be suitable for computational mechanics calculations that need to be run on more than one large AWS Cluster Compute node in parallel. Infiniband is necessary when running in parallel on more than one AWS Cluster Compute instance with 16 cores, to reduce latency and increase bandwidth.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IBM Launches Commercial Quantum Network with Samsung, ORNL

December 14, 2017

In the race to commercialize quantum computing, IBM is one of several companies leading the pack. Today, IBM announced it had signed JPMorgan Chase, Daimler AG, Samsung and a number of other corporations to its IBM Q Net Read more…

By Tiffany Trader

TACC Researchers Test AI Traffic Monitoring Tool in Austin

December 13, 2017

Traffic jams and mishaps are often painful and sometimes dangerous facts of life. At this week’s IEEE International Conference on Big Data being held in Boston, researchers from TACC and colleagues will present a new Read more…

By HPCwire Staff

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in what has become an overwhelmingly two-socket landscape in the d Read more…

By John Russell

HPE Extreme Performance Solutions

Explore the Origins of Space with COSMOS and Memory-Driven Computing

From the formation of black holes to the origins of space, data is the key to unlocking the secrets of the early universe. Read more…

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as several tech giants jockey to establish a pole position in the race toward commercialization of quantum. This week, Microsoft took the next step in Read more…

By Tiffany Trader

IBM Launches Commercial Quantum Network with Samsung, ORNL

December 14, 2017

In the race to commercialize quantum computing, IBM is one of several companies leading the pack. Today, IBM announced it had signed JPMorgan Chase, Daimler AG, Read more…

By Tiffany Trader

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in wha Read more…

By John Russell

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as several tech giants jockey to establish a pole position in the race toward commercializ Read more…

By Tiffany Trader

HPC Iron, Soft, Data, People – It Takes an Ecosystem!

December 11, 2017

Cutting edge advanced computing hardware (aka big iron) does not stand by itself. These computers are the pinnacle of a myriad of technologies that must be care Read more…

By Alex R. Larzelere

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Microsoft Spins Cycle Computing into Core Azure Product

December 5, 2017

Last August, cloud giant Microsoft acquired HPC cloud orchestration pioneer Cycle Computing. Since then the focus has been on integrating Cycle’s organization Read more…

By John Russell

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPE In-Memory Platform Comes to COSMOS

November 30, 2017

Hewlett Packard Enterprise is on a mission to accelerate space research. In August, it sent the first commercial-off-the-shelf HPC system into space for testing Read more…

By Tiffany Trader

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This