‘Edison’ Lights Up Research at NERSC

By Tiffany Trader

January 31, 2014

The National Energy Research Scientific Computing (NERSC) Center, located at Lawrence Berkeley National Laboratory, has taken acceptance of “Edison,” a Cray XC30 supercomputer named in honor of famed American inventor Thomas Alva Edison.

resizedimage700346-Edison-head-on

The important milestone occurs just as NERSC is commemorating 40 years of scientific advances, prompting NERSC Director Sudip Dosanjh to comment: “As we celebrate NERSC’s 40th anniversary, it’s quite fitting we start the year by dedicating Edison, a system that embodies our guiding principle over the last four decades: computing in the service of science.”

Edison has a peak computational output of 2.4 petaflops, but NERSC officials like to emphasize the machine’s sustained performance on real applications. NERSC’s 5,000 researchers publish an average of 1,700 peer-reviewed research articles every year, surpassing the productivity of all other DOE Office of Science computing centers.

In line with supporting productive science for NERSC’s diverse community of researchers, Edison was built and configured to accommodate both traditional modeling and simulation workloads as well as the growing body of data analytics work.

In an earlier interview with HPCwire, Jeff Broughton, NERSC deputy for operations and leader of the Edison procurement, reported that NERSC’s user community is seeing “a big increase in data-intensive computing, with a focus on high throughput and single-node performance.” Thus the center needed a system that could “meet the needs of data-intensive applications while continuing to support conventional HPC.”

Tracing the changing paradigm, Director Dosanjh explains that historically NERSC exported most of its data, but that situation has flipped. NERSC still transmits data from large-scale simulations to other sites, but there’s even more experimental data coming in the door, such that NERSC is now a net importer. The center takes in a petabyte of data each month, much of it related to the biosciences, climate and high-energy physics.

Accomplishing this mixed-mode capability requires a balanced approach to system design. Simulating and modeling complex phenomena has always pushed the limits of computation. Such workloads benefit from a large number of tightly-coupled processors, but don’t necessarily need a lot of memory per CPU. Data analysis problems, like genome sequencing and searching for new materials, on the other hand, perform better with more memory per node. At one time, analysis workloads were compatible with small clusters, but with increasing data loads, they are outgrowing the smaller machines.

“If you have a computing resource like Edison, one with the flexibility to run different classes of problems, then you can apply the full capacity of your system to the problem at hand, whether that be high-throughput genome sequencing or highly parallel climate simulations,” Broughton explains.

To ensure optimal results across application types, data movement cannot be constrained. To that point, the Cray XC30 machine has been outfitted with a high speed interconnect, very high memory bandwidth as well as high memory per node. It also has very high input/output speeds (140 gigabytes per second) to the file system and disk system.

“Data movement is the limiting factor for a large fraction of the 600 codes that run at NERSC,” Dosanjh told HPCwire in April. “Floating point units are often idle waiting for data to arrive. Many codes spend a few percent of their total runtime performing floating point operations, the rest of the time is spent accessing memory or calculating memory addresses. Edison will be a very effective platform for running the very broad range of science codes at NERSC.”

An official dedication ceremony for Edison will be held at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) on Feb. 5.

Here is a snapshot of the system’s specs:

  • 332 terabytes memory
  • 2.39 petaflops of peak performance
  • 124,608 processing cores
  • 462 terabytes/second global memory bandwidth
  • 11 terabytes/second network bisection bandwidth
  • 7.56 petabytes disk storage
  • 163 gigabytes/second I/O bandwidth
Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Cray+Azure: Can Cloud Propel Supercomputing?

October 23, 2017

Cray and Microsoft today announced they will offer dedicated Cray supercomputers (the XC and CS-Storm lines) inside the Azure platform allowing customers to run their HPC and AI applications alongside their other cloud w Read more…

By Tiffany Trader

2017 Gordon Bell Prize Finalists Named

October 23, 2017

The three finalists for this year’s Gordon Bell Prize in High Performance Computing have been announced. They include two papers on projects run on China’s Sunway TaihuLight system and a third paper on 3D image recon Read more…

By John Russell

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together about 30 participants from industry, government and academia t Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Cray+Azure: Can Cloud Propel Supercomputing?

October 23, 2017

Cray and Microsoft today announced they will offer dedicated Cray supercomputers (the XC and CS-Storm lines) inside the Azure platform allowing customers to run Read more…

By Tiffany Trader

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together ab Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Leading Solution Providers

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This