One Year, 7,000 Xeon Phi Cards: The TACC Experience

By Nicole Hemsoth

February 3, 2014

The Intel Xeon Phi, which was just branded and officially launched back in November 2012, is already behind some leading research at one of the U.S.’s premier scientific computing centers. According to leaders at the Texas Advanced Computing Center (TACC), the coprocessor has made significant bounds into a wider array of applications over the last year.

The Stampede supercomputer at the Texas Advanced Computing Center (TACC) was the first large-scale system to deploy the Phi at massive scale. We spoke with Dan Stanzione, acting director at TACC (replacing Jay Boisseau, who retired from the center in January) about the Dell-integrated system, which has around 100,000 processors and 2.2 petaflops of performance within the base Xeon system alone. In addition to this, Stampede has a number of specialized subsystems, including a large shared memory system, GPUs to support on-system visualization as well as GPU computing. The approximately 7,000 Xeon Phi cards added another 7.5 petaflops of performance, bringing the system to #7 on the most recent Top 500 list at around 10 petaflops.

The use cases for Xeon Phi at TACC have been most notable in a few key areas, including molecular dynamics for flu vaccine research, quantum chromodynamics and increasingly, weather forecasting, Stanzione says. However, their deployment of the cards was rather different than usual to begin with. Since they received Stampede nodes well in advance of the Phi cards, the team had to later install each card by hand—one for each of the nodes (although some are equipped with two). Aside from going through close to 150,000 screws, this meant that users were forced to skip the staging process that happens with new architectures.

For many users, instead of taking time on workstations and on small experimental clusters to kick the Phi tires, they jumped in at full scale. The benefit of this, however, was that Stanzione and his team were able to see the entire lifecycle of the Phi implementation. It started with very small experimental runs, but over time they’ve seen it catch on with a number of user groups, with some moving quickly into production and scaling up the size of their runs to tens of thousands of cores. Stanzione says they’ve seen Phi usage grow from 1 or 2 percent of the cycles each month to 10-20 percent.

“The Phi is one of several solutions (GPUs, FPGAs, APUs and others) focused on changing the power and performance curves that are the current trends in supercomputing. Transistors and operations are getting more efficient in every generation, but our demand for computation is growing faster than our power efficiency–so we still end up with substantially bigger systems that take more power,” said Stanzione. He made this point in the context of the Ranger system that Stampede stepped in for, noting that Stampede’s base system is about four times the compute power that Ranger was, but it’s also about twice the physical power and footprint of Ranger. “That’s not a curve we can stay on forever. The Xeon Phi is Intel’s approach to really changing these power and performance curves by giving us simpler cores with a simpler architecture but a lot more of them in the same size package.”

Stanzione continued, “Although we have the same power per transistor, we have a lot less power per floating point operation…the ARM, GPU and other folks are taking different approaches to that problem but we went with Phi. We went through all of them and looked carefully because although in any of these architectures you have much more parallelism on the chip you’re going to have to expose a lot more of the parallelism in your application, but the Phi was most familiar to the largest swath of our users—it’s the familiar x86 programming model; OpenMP for threading, MPI for task-based parallelism.”

“Whether you’re looking at GPUs or Xeon Phi that are both in the accelerator world now on a separate card and offloaded to the CPU, I think they both foreshadow what is coming in the future—the not so distant future—in the mainline processors. The work that we’re putting in now to optimize codes for these architectures is certainly going to pay off down the line as these become part of the mainline processors. So it’s not so much ‘should I adopt them;’ it’s whether you want to get a jump for the future.”

You can hear the full interview with Stanzione here.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

‘Business Value’ of AI Heads Toward $4 Trillion

April 26, 2018

The rise of AI is reflected in recent market forecasts that predict it will help enterprises develop new products and services around applications like automated decision making. Market analyst Gartner Inc. forecasts Read more…

By George Leopold

Former AMD Chip Chief and ‘Zen’ Architect Jim Keller Joins Intel

April 26, 2018

Intel announced today it has hired top microprocessor architect Jim Keller as senior vice president to lead the company’s silicon engineering group, focusing on system-on-chip (SoC) development and integration. Read more…

By Tiffany Trader

Rackspace Is Latest to Roll Bare Metal Service

April 26, 2018

Rackspace is expanding its managed private cloud services with the addition of six new bare metal instances that it collectively refers to as bare metal as a service. The private cloud vendor announced the new managed Read more…

By George Leopold

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

Google Charts Two-Dimensional Quantum Course

April 26, 2018

Quantum error correction, essential for achieving universal fault-tolerant quantum computation, is one of the main challenges of the quantum computing field and it’s top of mind for Google’s John Martinis. At a presentation last week at the HPC User Forum in Tucson, Martinis, one of the world's foremost experts in quantum computing, emphasized... Read more…

By Tiffany Trader

Google Charts Two-Dimensional Quantum Course

April 26, 2018

Quantum error correction, essential for achieving universal fault-tolerant quantum computation, is one of the main challenges of the quantum computing field and it’s top of mind for Google’s John Martinis. At a presentation last week at the HPC User Forum in Tucson, Martinis, one of the world's foremost experts in quantum computing, emphasized... Read more…

By Tiffany Trader

Affordable Optical Technology Needed Says HPE’s Daley

April 26, 2018

While not new, the challenges presented by computer cabling/PCB circuit routing design – cost, performance, space requirements, and power management – have Read more…

By John Russell

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is Read more…

By Tiffany Trader

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Leading Solution Providers

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This