Cray Advances Hadoop for HPC

By Tiffany Trader

February 4, 2014

In a recent blog entry, Mike Boros, Hadoop Product Marketing Manager at Cray, Inc., writes about the company’s positioning of Hadoop for scientific big data. Like the old adage, “when the only tool you have is a hammer, every problem begins to resemble a nail,” Boros suggests that the Law of the Instrument may be true for technical computing professionals assessing the most well-known of the big data tools: Hadoop.

Boros writes: “When used inappropriately, and incorporating technologies not suited for scientific Big Data, using Hadoop may indeed feel like wielding a cumbersome hammer. But when used appropriately, and with a technology stack that’s specifically suited to the realities of scientific Big Data, Hadoop can feel like a Swiss Army knife — a multipurpose tool capable of doing a wide range of things.”

“Of course, whether Hadoop feels like a Swiss Army knife or not depends not only on the experience level of the user, but also on whether it’s designed and implemented for scientific Big Data. And scientific Big Data is different from the Big Data much of the rest of the world is dealing with,” he adds.

It all boils down to suitability for the job at hand. Hadoop was developed to handle bite-sized pieces of data that are aggregated into larger files and then analyzed in their entirety. It’s an ideal approach for assessing user sentiment in social media feeds and it can also be applied to big data science applications that incorporate a large number of sensor data. But when it comes to analyzing a seismic or weather model file as part of a big data application, Hadoop’s usefulness starts to break down.

“Hadoop can indeed feel like a blunt and inappropriate hammer when this inefficient process of analyzing unnecessary blocks of data is repeated dozens or hundreds of times a day,” writes Boros. “This is a case where random access to files is necessitated, and frankly, that’s not in HDFS’s (the Hadoop Distributed File System) wheelhouse.”

But because of its Swiss Army knife-like design, Hadoop lends itself to some interesting workarounds and modifications. By leveraging MapReduce and wrapping HDFS with a POSIX compliant file system such as Lustre, users can simply skip the extraneous or uninteresting data blocks in order to devote more resources towards analyzing large hierarchical files. To those who would point out that this isn’t really Hadoop but MapReduce on a POSIX-compliant file system, Boros explains that the approach is done in way that doesn’t affect Hadoop’s other operations, meaning the MapReduce ecosystem is still in tact. “In other words,” writes Boros, “the storage has to be presented to MapReduce and its constituents as if it was HDFS, even though another file system lies underneath it. And yes, that’s one of the ways we are looking at for designing our Hadoop solutions here at Cray.”

Boros understands that standard Hadoop implementations aren’t the best fit for traditional HPC applications, but he believes that the tool has the inherent flexibility to bridge the big data / big compute divide. While scientific environments work well with standard file systems built around Posix file access, Boros suggests that mounting the POSIX compliant volume with MapReduce would be an ideal situation. There are still some kinks to iron out, but Cray is working on these, and according to Boros, “you won’t be obligated to take on a 200 percent availability overhead tax as the file system you’re using will likely require 15-20 percent RAID parity which most organizations find appropriate for even their most mission-critical data.”

The message here is that one environment can excel at both analytical and compute-intensive workloads. For Cray, the flexibility of the Hadoop stack and supporting infrastructure plays a major role in this vision. The company is taking steps to modify Hadoop to be more efficient and perhaps even more cost-effective than using an ad-hoc distributed infrastructure.

As for why organizations would want a system to do double-duty in this way, Boros emphasizes the benefits of a flexible infrastructure and workflow. Being able to use the same infrastructure for multiple job types will allow users to focus on different parts of a project at different points in time. They also have the option to work on grand challenge problems that don’t easily fall into standard application buckets. And depending on how the approach is implemented, they will be able to manage disparate workloads and workflows in parallel by employing resource management and job scheduling techniques. Such a machine will lend itself to sharing across departments, helping to achieve an equitable division of budgetary and staffing resources.

Boros expects to get some pushback for the Swiss Army knife analogy, as HPC has historically opted for the best possible tool for a given job even if that meant developing it in-house. But that paradigm is changing. Commoditization is entrenched in HPC – and the maker of the iconic Cray-1 is leading the charge on this aspect of the convergence.

Here’s Boros, describing the evolution of Hadoop: “It was initially conceived in the service provider world where huge staffs maintain thousands upon thousands of cheap white boxes by spending their days applying the DevOps equivalent of duct tape and bailing wire with Perl scripts and Ruby,” he writes. “It’s somewhat green, and still requires a great deal of fiddling to get right. And it’s out of the box design seems to be a full 180 degrees off of anything HPC stands for. But I believe it’s going to have a prominent role in your datacenter in the not too distant future.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

NSF Project Sets Up First Machine Learning Cyberinfrastructure – CHASE-CI

July 25, 2017

Earlier this month, the National Science Foundation issued a $1 million grant to Larry Smarr, director of Calit2, and a group of his colleagues to create a community infrastructure in support of machine learning research Read more…

By John Russell

DARPA Continues Investment in Post-Moore’s Technologies

July 24, 2017

The U.S. military long ago ceded dominance in electronics innovation to Silicon Valley, the DoD-backed powerhouse that has driven microelectronic generation for decades. With Moore's Law clearly running out of steam, the Read more…

By George Leopold

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in 2017 with scale-up production for enterprise datacenters and Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Servers Deliver High Performance Remote Visualization

Whether generating seismic simulations, locating new productive oil reservoirs, or constructing complex models of the earth’s subsurface, energy, oil, and gas (EO&G) is a highly data-driven industry. Read more…

Trinity Supercomputer’s Haswell and KNL Partitions Are Merged

July 19, 2017

Trinity supercomputer’s two partitions – one based on Intel Xeon Haswell processors and the other on Xeon Phi Knights Landing – have been fully integrated are now available for use on classified work in the Nationa Read more…

By HPCwire Staff

NSF Project Sets Up First Machine Learning Cyberinfrastructure – CHASE-CI

July 25, 2017

Earlier this month, the National Science Foundation issued a $1 million grant to Larry Smarr, director of Calit2, and a group of his colleagues to create a comm Read more…

By John Russell

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's out Read more…

By Tiffany Trader

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the com Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee Read more…

By Alex R. Larzelere

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provid Read more…

By Tiffany Trader

Satellite Advances, NSF Computation Power Rapid Mapping of Earth’s Surface

July 13, 2017

New satellite technologies have completely changed the game in mapping and geographical data gathering, reducing costs and placing a new emphasis on time series Read more…

By Ken Chiacchia and Tiffany Jolley

Intel Skylake: Xeon Goes from Chip to Platform

July 13, 2017

With yesterday’s New York unveiling of the new “Skylake” Xeon Scalable processors, Intel made multiple runs at multiple competitive threats and strategic Read more…

By Doug Black

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This