Cray Advances Hadoop for HPC

By Tiffany Trader

February 4, 2014

In a recent blog entry, Mike Boros, Hadoop Product Marketing Manager at Cray, Inc., writes about the company’s positioning of Hadoop for scientific big data. Like the old adage, “when the only tool you have is a hammer, every problem begins to resemble a nail,” Boros suggests that the Law of the Instrument may be true for technical computing professionals assessing the most well-known of the big data tools: Hadoop.

Boros writes: “When used inappropriately, and incorporating technologies not suited for scientific Big Data, using Hadoop may indeed feel like wielding a cumbersome hammer. But when used appropriately, and with a technology stack that’s specifically suited to the realities of scientific Big Data, Hadoop can feel like a Swiss Army knife — a multipurpose tool capable of doing a wide range of things.”

“Of course, whether Hadoop feels like a Swiss Army knife or not depends not only on the experience level of the user, but also on whether it’s designed and implemented for scientific Big Data. And scientific Big Data is different from the Big Data much of the rest of the world is dealing with,” he adds.

It all boils down to suitability for the job at hand. Hadoop was developed to handle bite-sized pieces of data that are aggregated into larger files and then analyzed in their entirety. It’s an ideal approach for assessing user sentiment in social media feeds and it can also be applied to big data science applications that incorporate a large number of sensor data. But when it comes to analyzing a seismic or weather model file as part of a big data application, Hadoop’s usefulness starts to break down.

“Hadoop can indeed feel like a blunt and inappropriate hammer when this inefficient process of analyzing unnecessary blocks of data is repeated dozens or hundreds of times a day,” writes Boros. “This is a case where random access to files is necessitated, and frankly, that’s not in HDFS’s (the Hadoop Distributed File System) wheelhouse.”

But because of its Swiss Army knife-like design, Hadoop lends itself to some interesting workarounds and modifications. By leveraging MapReduce and wrapping HDFS with a POSIX compliant file system such as Lustre, users can simply skip the extraneous or uninteresting data blocks in order to devote more resources towards analyzing large hierarchical files. To those who would point out that this isn’t really Hadoop but MapReduce on a POSIX-compliant file system, Boros explains that the approach is done in way that doesn’t affect Hadoop’s other operations, meaning the MapReduce ecosystem is still in tact. “In other words,” writes Boros, “the storage has to be presented to MapReduce and its constituents as if it was HDFS, even though another file system lies underneath it. And yes, that’s one of the ways we are looking at for designing our Hadoop solutions here at Cray.”

Boros understands that standard Hadoop implementations aren’t the best fit for traditional HPC applications, but he believes that the tool has the inherent flexibility to bridge the big data / big compute divide. While scientific environments work well with standard file systems built around Posix file access, Boros suggests that mounting the POSIX compliant volume with MapReduce would be an ideal situation. There are still some kinks to iron out, but Cray is working on these, and according to Boros, “you won’t be obligated to take on a 200 percent availability overhead tax as the file system you’re using will likely require 15-20 percent RAID parity which most organizations find appropriate for even their most mission-critical data.”

The message here is that one environment can excel at both analytical and compute-intensive workloads. For Cray, the flexibility of the Hadoop stack and supporting infrastructure plays a major role in this vision. The company is taking steps to modify Hadoop to be more efficient and perhaps even more cost-effective than using an ad-hoc distributed infrastructure.

As for why organizations would want a system to do double-duty in this way, Boros emphasizes the benefits of a flexible infrastructure and workflow. Being able to use the same infrastructure for multiple job types will allow users to focus on different parts of a project at different points in time. They also have the option to work on grand challenge problems that don’t easily fall into standard application buckets. And depending on how the approach is implemented, they will be able to manage disparate workloads and workflows in parallel by employing resource management and job scheduling techniques. Such a machine will lend itself to sharing across departments, helping to achieve an equitable division of budgetary and staffing resources.

Boros expects to get some pushback for the Swiss Army knife analogy, as HPC has historically opted for the best possible tool for a given job even if that meant developing it in-house. But that paradigm is changing. Commoditization is entrenched in HPC – and the maker of the iconic Cray-1 is leading the charge on this aspect of the convergence.

Here’s Boros, describing the evolution of Hadoop: “It was initially conceived in the service provider world where huge staffs maintain thousands upon thousands of cheap white boxes by spending their days applying the DevOps equivalent of duct tape and bailing wire with Perl scripts and Ruby,” he writes. “It’s somewhat green, and still requires a great deal of fiddling to get right. And it’s out of the box design seems to be a full 180 degrees off of anything HPC stands for. But I believe it’s going to have a prominent role in your datacenter in the not too distant future.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SC Bids Farewell to Denver, Heads to Dallas for 30th

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visitors to the Colorado Convention Center in Denver for the larg Read more…

By Tiffany Trader

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

How Cities Use HPC at the Edge to Get Smarter

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some cases, city managers didn’t even know existed. Speaking Read more…

By Doug Black

HPE Extreme Performance Solutions

Harness Scalable Petabyte Storage with HPE Apollo 4510 and HPE StoreEver

As a growing number of connected devices challenges IT departments to rapidly collect, manage, and store troves of data, organizations must adopt a new generation of IT to help them operate quickly and intelligently. Read more…

SC17 Student Cluster Competition Configurations: Fewer Nodes, Way More Accelerators

November 16, 2017

The final configurations for each of the SC17 “Donnybrook in Denver” Student Cluster Competition have been released. Fortunately, each team received their equipment shipments on time and undamaged, so the teams are r Read more…

By Dan Olds

SC Bids Farewell to Denver, Heads to Dallas for 30th

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visit Read more…

By Tiffany Trader

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

How Cities Use HPC at the Edge to Get Smarter

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some Read more…

By Doug Black

Student Cluster LINPACK Record Shattered! More LINs Packed Than Ever before!

November 16, 2017

Nanyang Technological University, the pride of Singapore, utterly destroyed the Student Cluster Competition LINPACK record by posting a score of 51.77 TFlop/s a Read more…

By Dan Olds

Hyperion Market Update: ‘Decent’ Growth Led by HPE; AI Transparency a Risk Issue

November 15, 2017

The HPC market update from Hyperion Research (formerly IDC) at the annual SC conference is a business and social “must,” and this year’s presentation at S Read more…

By Doug Black

Nvidia Focuses Its Cloud Containers on HPC Applications

November 14, 2017

Having migrated its top-of-the-line datacenter GPU to the largest cloud vendors, Nvidia is touting its Volta architecture for a range of scientific computing ta Read more…

By George Leopold

HPE Launches ARM-based Apollo System for HPC, AI

November 14, 2017

HPE doubled down on its memory-driven computing vision while expanding its processor portfolio with the announcement yesterday of the company’s first ARM-base Read more…

By Doug Black

OpenACC Shines in Global Climate/Weather Codes

November 14, 2017

OpenACC, the directive-based parallel programming model used mostly for porting codes to GPUs for use on heterogeneous systems, came to SC17 touting impressive Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This