HPC Roots Feed Big Data Branches

By Nicole Hemsoth

February 9, 2014

In this segment of our continuing “HPC Lessons for the Wider Enterprise World” series, we’ll take a look at one of the key movements that’s pushed HPC into the mainstream view—big data. Whether or not it’s an overplayed buzzword, the reality is, the phenomenon is driving new awareness of HPC in a growing set of commercial IT circles; pushing traditional HPC vendors into new enterprise territory; and helping the highest ends of both the commercial and research computing find a new golden era of new tools, frameworks and methodologies for tackling demanding data.

According to the most recent IDC figures, 67% of HPC shops say that they perform what can be categorized as big data analysis. These workloads, which the analyst firm dubs, “high performance data analysis” (HPDA) are expected to grow extensively, increasing from $743.8 million in 2012 to almost $1.4 billion in 2017. Additonally, the storage revenue for high performance data analysis on HPC systems will near almost a billion by 2017, IDC says.

IDC defines HPDA as data-intensive simulation and analysis, involving tasks with “sufficient data volumes and algorithmic complexity to require HPC resources.” This can include existing simulation or new analytical methods, and a variety of data types (structured, unstructured, both) or potentially the use of graph analytics or Hadoop frameworks, for example.

These are striking figures in their own right, but let’s consider the reverse of these numbers for a moment. While HPC might be adopting tools and techniques driven from the big data-laden enterprise (nebulous dividing lines exist terminology-wise when HPC/big data are separated into distinct classifications), this series is focused on the lessons about scalability, reliability, efficiency and extensibility that HPC can teach to the big data masses.

In our own informal opinion survey of experts across the HPC spectrum, a resounding majority saw simple parallels between HPC and commercial big data but noted key differences in terms how each camp thinks about hardware and software tools and resources as well as overall workflow. In sum, the HPC leaders we spoke with for the series saw ample opportunities for HPC technologies to filter out—not just in terms of raw technology, but also in the way of processes, methodologies and approaches to addressing large, complex data volumes that require reasonably good performance.

As Bill Kramer, Deputy Project Director for the Blue Waters project at the National Center for Supercomputing Applications (NCSA) echoed, “Today, we see data analysis and data use surpassing much of the performance capability of commodity interconnects and protocols. HPC has dealt with large scale data for many years, and many of the HPC-like technologies, properly adapted, have the potential to enable new and expanded investigations.”

“Some aspects of what we now call big data are certainly novel and innovative, but in many other corners, big data solutions currently are simply re-inventing the wheel—wheels that have been turning in classical HPC for years, if not decades.” Fritz Ferstl, CTO of Univa says. He points to workload management and distributed file systems as prime examples, noting that “even some of the parallel programming paradigms that are being employed in the big data space seem unnecessarily differentiated from what has been evolving and has matured in classical HPC over two decades.”

When we asked Jack Dongarra, Distinguished Professor at the University of Tennessee and lead at Oak Ridge National Lab about what lessons HPC has to offer the world of mainstream big data, he offered an answer as nuanced as both technology areas. He explained that while it is widely recognized that “big data” is has many meanings, this multiplicity of meanings isn’t necessarily a good thing. Part of the problem is that, like familiar alternatives, such as “data intensive,” what counts as big data is relative to other factors, and therefore changes depending on the perspective—processor, memory, bandwidth, storage—from which it is being viewed.

“Straightforward examples of big data applications in this sense are applications that take all of a supercomputer’s memory or more, or that are too complex to process because the relation between computation and data size is non-linear, or that have real-time processing requirements the velocity of which exceeds the I/O bandwidth,” said Dr. Dongarra.

“Generally speaking,” he said, “there are very few large-scale applications of practical importance that are not data intensive when looked at from some relevant point of view. When looking are application in the HPC space, whether the data comes from new instruments, from massive simulations, or from distributed sensors, deliver eye-glazing quantities of data at unprecedented rates. From an applications perspective, however, discussions of big data have greatly increased the prominence of ‘data-driven’ applications (such as data analytics, top-down queries and predictive modeling), where the operations are defined and propelled not only by large data volumes and data streams, but also by the complexity or heterogeneity of the data involved.”

Dongarra says that although researchers have been successful for some time in processing computer-generated, semi-structured data (big simulations) and structured observational data (big instruments), “they are now more eager to take on the challenges of high volumes of unstructured and heterogeneous observational data (text, images, medical records, etc.), which often come in massive piles of small units and are asynchronously generated. So in that way, big data is redefining the HPC application landscape.”

Rob Clyde, CEO of Adaptive Computing, reminds us that “all enterprises, not just Fortune 500 companies, are collecting and storing massive amounts of data, from social media for retailers to multi-dimensional seismic imaging in oil and gas and everything in between. However, the enterprise is struggling to extract better insights and leverage the data to make data-driven decisions. The process is very manual and time consuming with complex dependencies that need to manage multiple applications. The end result is overutilized siloed environments while others lay idle.

To get up to speed, says Clyde, the enterprise can take a play out of the traditional HPC playbook, which has been dealing with big data for a long time. “The requirements are similar to traditional HPC users; however, the players are different and more prolific as HPC hardware becomes more affordable, even for the mid-market.”

His opinions were validated by a recent survey his company produced. According to their findings, which were the collective ideas of over 400 data center managers, administrators and users in a number of verticals, data is primarily being analyzed by home-grown and highly customized applications. The survey also found that 83 percent believe big data analytics are important to their organization or department, but 90 percent would have greater satisfaction from a better analysis process and 84 percent have a manual process to analyze big data.

Based on their own internal survey, which took a look at the big picture across a number of verticals, “the enterprise severely limits its ability to achieve big data insights rapidly and cost-effectively because they do not recognize the differences between traditional IT workloads and big data workloads. Simply put, siloed environments with no workflow automation to process simulations and data analysis fall short in their ability to extract game-changing information from data. In line with our survey findings, we predict that more of the enterprise will adopt HPC to aid their big data efforts.”

Although Clyde and his team at Adaptive are focused on workload automation and large-scale management of workflows, their findings are worth noting as the “siloed environment” problem is dually encountered in both HPC and enterprise settings. While we’ll talk more about this when we move into our software segment of this special series, it’s worth noting that the complexity challenges extend far beyond the diversity and structure of the data—there is still a profound need for users to put the overall workflows into context of goals, current tools and applications, efficiency and beyond. HPC has been able to understand the finer points of doing this at scale, which means their views on adopting workflows to complex environments should not be overlooked by enterprise users seeking to streamline their big data analytics operations.

In essence, much of what Dongarra, Clyde, and others shared for this and other segments of this HPC-to-enterprise series revolves around the topic of workflow.  As Jack Dongarra noted, “In today’s society, the processing of digital information has become such a routine part of life that the general idea of creating digital workflows, in this generic sense, increasingly pervades even discussions of personal productivity in popular media.”

He argues that the concept of workflows will also dominate much of the thinking about cyberinfrastructure for all kinds of research in the era of data-driven science. “The problems inherent in working with data that are streaming out of instruments and simulations at peta- or exabyte rates, or of integrating and analyzing massive, multi-dimensional data sets, are simply too difficult for things to be otherwise. In terms of challenges to workflow, many domain sciences that produce and manage big data share common constraints.”

HPC and large-scale enterprise analyst Dan Olds, with Gabriel Consulting, reiterated some of these ideas, noting that enterprises are “experiencing an unprecedented expansion in the amount to data that’s available to them and potential uses for that data.” Olds says that while sifting through this data will give them insights into their business, along with potential competitive advantage that simply weren’t possible a few years ago, there’s no free lunch – finding the gold nuggets in the data avalanche requires planning, expertise, and investment in the right technologies.

According to Olds, “Business side analysts are going to demand the ability to sort through massive amounts of raw data in order to find, and test, relationships between disparate factors. For example:  How early in autumn will people start thinking about buying winter clothes? Does this vary by location, age, or family size? What’s the best way to get our winter coat-aplooza sale offer in front of the right buyers at the right time? Framing these questions is their job, gathering, storing, and providing the ability to process the data is the job of the data center. Satisfying the analytic demands of the business is causing a lot of sleepless nights for many a data center manager these days.”

“The problems arise from the scale of data and associated compute power needed to process it. Compounding the challenge is the need for speed – enterprise managers need answers to their questions so that they can make quick decisions on pricing, stock levels, and other important issues,” he continued. An answer that comes too late to take advantage of an opportunity is worthless.

The overriding theme in both enterprise and research HPC data analytics environments is to seek the “big fish” in the seas of data. As we take a look in our next segments in this series at enabling tools and approaches, including cloud computing, hardware acceleration, software methods and tools, and other aspects, the wealth of information about how to manage large, complex data from the HPC community will come into greater focus.

The introductory article in this multiple-part series appearing in February can be found here.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AWS Embraces FPGAs, ‘Elastic’ GPUs

December 2, 2016

A new instance type rolled out this week by Amazon Web Services is based on customizable field programmable gate arrays that promise to strike a balance between performance and cost as emerging workloads create requirements often unmet by general-purpose processors. Read more…

By George Leopold

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 1, 2016)

December 1, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPC Career Notes (Dec. 2016)

December 1, 2016

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high performance computing community. Read more…

By Thomas Ayres

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

IBM and NSF Computing Pioneer Erich Bloch Dies at 91

November 30, 2016

Erich Bloch, a computational pioneer whose competitive zeal and commercial bent helped transform the National Science Foundation while he was its director, died last Friday at age 91. Bloch was a productive force to be reckoned. During his long stint at IBM prior to joining NSF Bloch spearheaded development of the “Stretch” supercomputer and IBM’s phenomenally successful System/360. Read more…

By John Russell

Pioneering Programmers Awarded Presidential Medal of Freedom

November 30, 2016

In an awards ceremony on November 22, President Barack Obama recognized 21 recipients with the Presidential Medal of Freedom, the Nation’s highest civilian honor. Read more…

By Tiffany Trader

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Intel Details AI Hardware Strategy for Post-GPU Age

November 21, 2016

Last week at SC16, Intel revealed its product roadmap for embedding its processors with key capabilities and attributes needed to take artificial intelligence (AI) to the next level. Read more…

By Alex Woodie

SC Says Farewell to Salt Lake City, See You in Denver

November 18, 2016

After an intense four-day flurry of activity (and a cold snap that brought some actual snow flurries), the SC16 show floor closed yesterday (Thursday) and the always-extensive technical program wound down today. Read more…

By Tiffany Trader

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Leading Solution Providers

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This