HPC Roots Feed Big Data Branches

By Nicole Hemsoth

February 9, 2014

In this segment of our continuing “HPC Lessons for the Wider Enterprise World” series, we’ll take a look at one of the key movements that’s pushed HPC into the mainstream view—big data. Whether or not it’s an overplayed buzzword, the reality is, the phenomenon is driving new awareness of HPC in a growing set of commercial IT circles; pushing traditional HPC vendors into new enterprise territory; and helping the highest ends of both the commercial and research computing find a new golden era of new tools, frameworks and methodologies for tackling demanding data.

According to the most recent IDC figures, 67% of HPC shops say that they perform what can be categorized as big data analysis. These workloads, which the analyst firm dubs, “high performance data analysis” (HPDA) are expected to grow extensively, increasing from $743.8 million in 2012 to almost $1.4 billion in 2017. Additonally, the storage revenue for high performance data analysis on HPC systems will near almost a billion by 2017, IDC says.

IDC defines HPDA as data-intensive simulation and analysis, involving tasks with “sufficient data volumes and algorithmic complexity to require HPC resources.” This can include existing simulation or new analytical methods, and a variety of data types (structured, unstructured, both) or potentially the use of graph analytics or Hadoop frameworks, for example.

These are striking figures in their own right, but let’s consider the reverse of these numbers for a moment. While HPC might be adopting tools and techniques driven from the big data-laden enterprise (nebulous dividing lines exist terminology-wise when HPC/big data are separated into distinct classifications), this series is focused on the lessons about scalability, reliability, efficiency and extensibility that HPC can teach to the big data masses.

In our own informal opinion survey of experts across the HPC spectrum, a resounding majority saw simple parallels between HPC and commercial big data but noted key differences in terms how each camp thinks about hardware and software tools and resources as well as overall workflow. In sum, the HPC leaders we spoke with for the series saw ample opportunities for HPC technologies to filter out—not just in terms of raw technology, but also in the way of processes, methodologies and approaches to addressing large, complex data volumes that require reasonably good performance.

As Bill Kramer, Deputy Project Director for the Blue Waters project at the National Center for Supercomputing Applications (NCSA) echoed, “Today, we see data analysis and data use surpassing much of the performance capability of commodity interconnects and protocols. HPC has dealt with large scale data for many years, and many of the HPC-like technologies, properly adapted, have the potential to enable new and expanded investigations.”

“Some aspects of what we now call big data are certainly novel and innovative, but in many other corners, big data solutions currently are simply re-inventing the wheel—wheels that have been turning in classical HPC for years, if not decades.” Fritz Ferstl, CTO of Univa says. He points to workload management and distributed file systems as prime examples, noting that “even some of the parallel programming paradigms that are being employed in the big data space seem unnecessarily differentiated from what has been evolving and has matured in classical HPC over two decades.”

When we asked Jack Dongarra, Distinguished Professor at the University of Tennessee and lead at Oak Ridge National Lab about what lessons HPC has to offer the world of mainstream big data, he offered an answer as nuanced as both technology areas. He explained that while it is widely recognized that “big data” is has many meanings, this multiplicity of meanings isn’t necessarily a good thing. Part of the problem is that, like familiar alternatives, such as “data intensive,” what counts as big data is relative to other factors, and therefore changes depending on the perspective—processor, memory, bandwidth, storage—from which it is being viewed.

“Straightforward examples of big data applications in this sense are applications that take all of a supercomputer’s memory or more, or that are too complex to process because the relation between computation and data size is non-linear, or that have real-time processing requirements the velocity of which exceeds the I/O bandwidth,” said Dr. Dongarra.

“Generally speaking,” he said, “there are very few large-scale applications of practical importance that are not data intensive when looked at from some relevant point of view. When looking are application in the HPC space, whether the data comes from new instruments, from massive simulations, or from distributed sensors, deliver eye-glazing quantities of data at unprecedented rates. From an applications perspective, however, discussions of big data have greatly increased the prominence of ‘data-driven’ applications (such as data analytics, top-down queries and predictive modeling), where the operations are defined and propelled not only by large data volumes and data streams, but also by the complexity or heterogeneity of the data involved.”

Dongarra says that although researchers have been successful for some time in processing computer-generated, semi-structured data (big simulations) and structured observational data (big instruments), “they are now more eager to take on the challenges of high volumes of unstructured and heterogeneous observational data (text, images, medical records, etc.), which often come in massive piles of small units and are asynchronously generated. So in that way, big data is redefining the HPC application landscape.”

Rob Clyde, CEO of Adaptive Computing, reminds us that “all enterprises, not just Fortune 500 companies, are collecting and storing massive amounts of data, from social media for retailers to multi-dimensional seismic imaging in oil and gas and everything in between. However, the enterprise is struggling to extract better insights and leverage the data to make data-driven decisions. The process is very manual and time consuming with complex dependencies that need to manage multiple applications. The end result is overutilized siloed environments while others lay idle.

To get up to speed, says Clyde, the enterprise can take a play out of the traditional HPC playbook, which has been dealing with big data for a long time. “The requirements are similar to traditional HPC users; however, the players are different and more prolific as HPC hardware becomes more affordable, even for the mid-market.”

His opinions were validated by a recent survey his company produced. According to their findings, which were the collective ideas of over 400 data center managers, administrators and users in a number of verticals, data is primarily being analyzed by home-grown and highly customized applications. The survey also found that 83 percent believe big data analytics are important to their organization or department, but 90 percent would have greater satisfaction from a better analysis process and 84 percent have a manual process to analyze big data.

Based on their own internal survey, which took a look at the big picture across a number of verticals, “the enterprise severely limits its ability to achieve big data insights rapidly and cost-effectively because they do not recognize the differences between traditional IT workloads and big data workloads. Simply put, siloed environments with no workflow automation to process simulations and data analysis fall short in their ability to extract game-changing information from data. In line with our survey findings, we predict that more of the enterprise will adopt HPC to aid their big data efforts.”

Although Clyde and his team at Adaptive are focused on workload automation and large-scale management of workflows, their findings are worth noting as the “siloed environment” problem is dually encountered in both HPC and enterprise settings. While we’ll talk more about this when we move into our software segment of this special series, it’s worth noting that the complexity challenges extend far beyond the diversity and structure of the data—there is still a profound need for users to put the overall workflows into context of goals, current tools and applications, efficiency and beyond. HPC has been able to understand the finer points of doing this at scale, which means their views on adopting workflows to complex environments should not be overlooked by enterprise users seeking to streamline their big data analytics operations.

In essence, much of what Dongarra, Clyde, and others shared for this and other segments of this HPC-to-enterprise series revolves around the topic of workflow.  As Jack Dongarra noted, “In today’s society, the processing of digital information has become such a routine part of life that the general idea of creating digital workflows, in this generic sense, increasingly pervades even discussions of personal productivity in popular media.”

He argues that the concept of workflows will also dominate much of the thinking about cyberinfrastructure for all kinds of research in the era of data-driven science. “The problems inherent in working with data that are streaming out of instruments and simulations at peta- or exabyte rates, or of integrating and analyzing massive, multi-dimensional data sets, are simply too difficult for things to be otherwise. In terms of challenges to workflow, many domain sciences that produce and manage big data share common constraints.”

HPC and large-scale enterprise analyst Dan Olds, with Gabriel Consulting, reiterated some of these ideas, noting that enterprises are “experiencing an unprecedented expansion in the amount to data that’s available to them and potential uses for that data.” Olds says that while sifting through this data will give them insights into their business, along with potential competitive advantage that simply weren’t possible a few years ago, there’s no free lunch – finding the gold nuggets in the data avalanche requires planning, expertise, and investment in the right technologies.

According to Olds, “Business side analysts are going to demand the ability to sort through massive amounts of raw data in order to find, and test, relationships between disparate factors. For example:  How early in autumn will people start thinking about buying winter clothes? Does this vary by location, age, or family size? What’s the best way to get our winter coat-aplooza sale offer in front of the right buyers at the right time? Framing these questions is their job, gathering, storing, and providing the ability to process the data is the job of the data center. Satisfying the analytic demands of the business is causing a lot of sleepless nights for many a data center manager these days.”

“The problems arise from the scale of data and associated compute power needed to process it. Compounding the challenge is the need for speed – enterprise managers need answers to their questions so that they can make quick decisions on pricing, stock levels, and other important issues,” he continued. An answer that comes too late to take advantage of an opportunity is worthless.

The overriding theme in both enterprise and research HPC data analytics environments is to seek the “big fish” in the seas of data. As we take a look in our next segments in this series at enabling tools and approaches, including cloud computing, hardware acceleration, software methods and tools, and other aspects, the wealth of information about how to manage large, complex data from the HPC community will come into greater focus.

The introductory article in this multiple-part series appearing in February can be found here.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

What’s New in HPC Research: September (Part 1)

September 18, 2018

In this new bimonthly feature, HPCwire will highlight newly published research in the high-performance computing community and related domains. From exascale to quantum computing, the details are here. Check back every Read more…

By Oliver Peckham

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and development. Among other things it would establish a National Quantu Read more…

By John Russell

Nvidia Accelerates AI Inference in the Datacenter with T4 GPU

September 14, 2018

Nvidia is upping its game for AI inference in the datacenter with a new platform consisting of an inference accelerator chip--the new Turing-based Tesla T4 GPU--and a refresh of its inference server software packaged as Read more…

By George Leopold

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

A Crystal Ball for HPC

People are notoriously bad at predicting the future.  This very much includes experts. In the Forbes article “Why Most Predictions Are So Bad” Philip Tetlock discusses the largest and best-known test of the accuracy of expert predictions which show that any experts would do better if they make random guesses. Read more…

NSF Highlights Expanded Efforts for Broadening Participation in Computing

September 13, 2018

Today, the Directorate of Computer and Information Science and Engineering (CISE) of the NSF released a letter highlighting the expansion of its broadening participation in computing efforts. The letter was penned by Jam Read more…

By Staff

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Nvidia Accelerates AI Inference in the Datacenter with T4 GPU

September 14, 2018

Nvidia is upping its game for AI inference in the datacenter with a new platform consisting of an inference accelerator chip--the new Turing-based Tesla T4 GPU- Read more…

By George Leopold

DeepSense Combines HPC and AI to Bolster Canada’s Ocean Economy

September 13, 2018

We often hear scientists say that we know less than 10 percent of the life of the oceans. This week, IBM and a group of Canadian industry and government partner Read more…

By Tiffany Trader

Rigetti (and Others) Pursuit of Quantum Advantage

September 11, 2018

Remember ‘quantum supremacy’, the much-touted but little-loved idea that the age of quantum computing would be signaled when quantum computers could tackle Read more…

By John Russell

How FPGAs Accelerate Financial Services Workloads

September 11, 2018

While FSI companies are unlikely, for competitive reasons, to disclose their FPGA strategies, James Reinders offers insights into the case for FPGAs as accelerators for FSI by discussing performance, power, size, latency, jitter and inline processing. Read more…

By James Reinders

Update from Gregory Kurtzer on Singularity’s Push into FS and the Enterprise

September 11, 2018

Container technology is hardly new but it has undergone rapid evolution in the HPC space in recent years to accommodate traditional science workloads and HPC systems requirements. While Docker containers continue to dominate in the enterprise, other variants are becoming important and one alternative with distinctly HPC roots – Singularity – is making an enterprise push targeting advanced scale workload inclusive of HPC. Read more…

By John Russell

At HPC on Wall Street: AI-as-a-Service Accelerates AI Journeys

September 10, 2018

AIaaS – artificial intelligence-as-a-service – is the technology discipline that eases enterprise entry into the mysteries of the AI journey while lowering Read more…

By Doug Black

No Go for GloFo at 7nm; and the Fujitsu A64FX post-K CPU

September 5, 2018

It’s been a news worthy couple of weeks in the semiconductor and HPC industry. There were several HPC relevant disclosures at Hot Chips 2018 to whet appetites Read more…

By Dairsie Latimer

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

AMD’s EPYC Road to Redemption in Six Slides

June 21, 2018

A year ago AMD returned to the server market with its EPYC processor line. The earth didn’t tremble but folks took notice. People remember the Opteron fondly Read more…

By John Russell

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Franci Read more…

By John Russell

Sandia to Take Delivery of World’s Largest Arm System

June 18, 2018

While the enterprise remains circumspect on prospects for Arm servers in the datacenter, the leadership HPC community is taking a bolder, brighter view of the x86 server CPU alternative. Amongst current and planned Arm HPC installations – i.e., the innovative Mont-Blanc project, led by Bull/Atos, the 'Isambard’ Cray XC50 going into the University of Bristol, and commitments from both Japan and France among others -- HPE is announcing that it will be supply the United States National Nuclear Security Administration (NNSA) with a 2.3 petaflops peak Arm-based system, named Astra. Read more…

By Tiffany Trader

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

Intel Pledges First Commercial Nervana Product ‘Spring Crest’ in 2019

May 24, 2018

At its AI developer conference in San Francisco yesterday, Intel embraced a holistic approach to AI and showed off a broad AI portfolio that includes Xeon processors, Movidius technologies, FPGAs and Intel’s Nervana Neural Network Processors (NNPs), based on the technology it acquired in 2016. Read more…

By Tiffany Trader

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

GPUs Power Five of World’s Top Seven Supercomputers

June 25, 2018

The top 10 echelon of the newly minted Top500 list boasts three powerful new systems with one common engine: the Nvidia Volta V100 general-purpose graphics proc Read more…

By Tiffany Trader

The Machine Learning Hype Cycle and HPC

June 14, 2018

Like many other HPC professionals I’m following the hype cycle around machine learning/deep learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectation’ but not quite yet starting the descent into the ‘trough of disillusionment. This still raises the probability that... Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This