Advancing Applications Toward Exascale Target

By Tiffany Trader

February 11, 2014

Exascale computers will employ tens of thousands of many-core nodes, leaving programmers with the challenging task of developing applications that can leverage tens of millions of threads. Over at the Cray blog, Dr. Jason Beech-Brandt, Manager Exascale Research for Cray Europe, writes about how the supercomputer maker is helping lay the groundwork for exascale applications through a collaborative effort known as CRESTA.

In order for exascale applications to be productive, all the supporting layers also need to be optimized: from the operating and runtime systems, through the communication and scientific libraries to the compilers and toolsets. The need for such an ecosystem led Cray to establish the Cray Research Initiative Europe back in 2009. As part of that endeavor, Cray is working with key high performance computing (HPC) centers and software and tools developers across Europe under the banner of CRESTA (Collaborative Research into Exascale Systemware).

“Co-design is at the project’s core,” explains Beech-Brandt, “real application requirements driving systemware developments and research, which then feed back into the applications in an ongoing, virtuous cycle.”

With funding from the European Union, CRESTA has selected six applications for exascale-focused development. The applications were chosen by CRESTA HPC center partners and represent a broad range of domains, including CFD, numerical weather prediction, biomolecular systems, fusion energy, and physiological flows.

The CRESTA team is exploring new programming models, such as PGAS languages and OpenACC, as well as enhanced libraries, e.g., FFTs and sparse matrix operations. Another technique is to introduce fault tolerance both in the applications and in the communication libraries. The team is also experimenting with improved compilers, workflow, and diagnostic tools, such as DDT and Vampir from partners Allinea and TU Dresden, which help developers address the bottlenecks that limit the progress from petascale and exascale.

The project relies on large Cray supercomputers installed at CRESTA partner sites in Europe the United States, including the 20-petaflop (peak) Cray XK7 Titan supercomputer, located at the Oak Ridge National Laboratory. Access is enabled by the U.S. Department of Energy INCITE program, and three of CRESTA’s partner co-design applications have leveraged the INCITE program.

The Cray rep cites several examples of how customers can benefit from CRESTA. The European Center for Medium range Weather Forecasting (ECMWF), for example, uses the Integrated Forecast System (IFS) model to provide medium-range weather forecasts to its 34 European member states. The global grid size for simulations, currently based on a 16 km resolution, is expected to be refined down to a 2.5 km global weather forecast model by 2030, when employed on an exascale system. This means IFS needs to run efficiently on a thousand times more cores. Advances achieved by CRESTA have enabled IFS to harness 200,000 CPU cores on Titan. This is the most cores ever used for a weather model and it marks the first use of the 5 km resolution model that will be needed in medium range forecasts in 2023.

The breakthrough was enabled by new programming models, which eliminated a performance bottleneck. More specifically, the Cray Compiler Environment (CCE) used nested Fortran coarrays within OpenMP, which allowed communication time to be absorbed into existing calculations.

Cray reports other successes in the field of CFD too, with CRESTA researchers using the OpenACC programming model to extend the existing Nek5000 code to exploit accelerators. Adding only one OpenACC directive per thousand lines of Fortran code has already enabled a Nek5000 test case to be scaled across more than 16,000 GPU nodes of Titan, with an almost threefold increase in performance compared to just using the CPUs.

CRESTA is also helping to boost the performance of Gromacs, a classical molecular dynamics package for simulating the behavior of millions of particles. The work involves using a hybrid approach (CPUs and GPUs) to understand the mechanism of membrane fusion in viruses.

The Cray rep notes that the R&D undertaken by CRESTA has led to improvements in the Cray Compiler Environment (CCE), something Cray users everywhere can benefit from.

In CRESTA’s last year, Beech-Brandt  says to “expect more big improvements in applications, systemware, and tools.” When the program ends, Cray’s work on the exascale front will continue with projects like EPiGRAM.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

UCSD, AIST Forge Tighter Alliance with AI-Focused MOU

January 18, 2018

The rich history of collaboration between UC San Diego and AIST in Japan is getting richer. The organizations entered into a five-year memorandum of understanding on January 10. The MOU represents the continuation of a 1 Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Tennessee), Satoshi Matsuoka (Tokyo Institute of Technology), Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown and Spectre security updates on the performance of popular H Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE and NREL Take Steps to Create a Sustainable, Energy-Efficient Data Center with an H2 Fuel Cell

As enterprises attempt to manage rising volumes of data, unplanned data center outages are becoming more common and more expensive. As the cost of downtime rises, enterprises lose out on productivity and valuable competitive advantage without access to their critical data. Read more…

Fostering Lustre Advancement Through Development and Contributions

January 17, 2018

Six months after organizational changes at Intel's High Performance Data (HPDD) division, most in the Lustre community have shed any initial apprehension around the potential changes that could affect or disrupt Lustre Read more…

By Carlos Aoki Thomaz

UCSD, AIST Forge Tighter Alliance with AI-Focused MOU

January 18, 2018

The rich history of collaboration between UC San Diego and AIST in Japan is getting richer. The organizations entered into a five-year memorandum of understandi Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Fostering Lustre Advancement Through Development and Contributions

January 17, 2018

Six months after organizational changes at Intel's High Performance Data (HPDD) division, most in the Lustre community have shed any initial apprehension aroun Read more…

By Carlos Aoki Thomaz

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

ANL’s Rick Stevens on CANDLE, ARM, Quantum, and More

January 8, 2018

Late last year HPCwire caught up with Rick Stevens, associate laboratory director for computing, environment and life Sciences at Argonne National Laboratory, f Read more…

By John Russell

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This