How HPC is Hacking Hadoop

By Nicole Hemsoth

February 11, 2014

Although the trend may be quiet and distributed across only a relative few supercomputing sites, Hadoop and HPC are hopping hand-in-hand more frequently. These two technology areas aren’t necessarily made for another—there are limitations in what Hadoop can do. But a stretch of recent research has been pushing the possibilities, especially when it comes to making Hadoop fit data-intensive corners of scientific computing applications.

Despite the infrequency of news around Hadoop powering key research applications, we’ve watched key centers on this path, including the San Diego Supercomputer Center (which was one of the first to publish a comprehensive overview of using Hadoop on HPC resources) with great interest, and listened as nearly all major HPC system vendors (and many software ones too) targeted Hadoop users with key enhancements, tailored distributions, or even new product lines.

The research momentum behind Hadoop for HPC systems picked up in the last couple of years in particular. Among notable items are other explorations of Hadoop for data-intensive science, adapting MapReduce to an HPC environment, exploring it across different parallel file systems, handling scheduling and more. There are well over 2,000 peer-reviewed articles covering some aspect of this trend. The general theme, when you map it out and reduce it to a few words, is that the tooling required for HPC systems can be tweaked to fit Hadoop, especially when the purpose (offering a potential for more streamlined data management/processing on certain problems) is clear.

When it comes to data-intensive computing and Hadoop’s potential role in HPC, Dr. Glenn K. Lockwood at the San Diego Supercomputer Center (SDSC), is one of the key sources for information about specific challenges and opportunities. Most notably, Lockwood’s work on Hadoop for large-scale systems has drawn attention, particularly in terms of his work with the open source “big data” platform’s role on the Gordon system at SDSC.

Gordon is SDSC’s flash-based data-intensive computing resource. Although aimed at “big data” scientific computing, the Appro-built system still packs some serious compute power with its 16,160 cores, ranking at #88 on the most recent Top 500 list. The true measure of performance for Gordon, which was built to tackle data-intensive challenges, is in its input/output operations per second (IOPs) measurement—back when the machine was undergoing its acceptance cycle, it achieved 35 million IOPs. All of these elements made for some prime experimental ground for Lockwood and his colleagues.

In his role as a User Services Consultant at SDSC, Lockwood has been tracking a number of projects across the data-intensive computing spectrum. His most recent explorations, aside from running Hadoop clusters on Gordon, include writing Hadoop applications in Python with Hadoop Streaming, using (and finding parallel options for) the R language across supercomputers, and benchmarking several data-intensive computing frameworks, architectures and usage models.

“Although traditional supercomputers and Hadoop clusters are designed to solve very different problems and are consequentially architected differently, domain scientists are becoming increasingly interested in learning how Hadoop works and how it may be useful in addressing the data-intensive problems they face,” explained Lockwood.  “Making Hadoop available on Gordon has really made it easy for researchers to explore the features and benefits of Hadoop without having to learn an entirely new cloud API or be a systems administrator.”

He explained that instead, users can launch a Hadoop cluster by submitting a single pre-made job script to the batch system on Gordon with which they are already familiar. A “personal Hadoop cluster” is then launched on their job’s nodes, and users can then load data into their cluster’s distributed file system and run map/reduce tasks.  “Literally one single qsub command starts up a fully featured Hadoop cluster on Gordon’s 40 Gbps InfiniBand fabric with HDFS that is either backed by Gordon’s 300 GB SSDs or its Lustre filesystem,” said Lockwood. “This translates into Hadoop clusters capable of ingesting data to HDFS at a rate in excess of 750 MB/s and completing a 1.6 TB TeraSort in under 15 minutes. Because Gordon delivers this high performance both in traditional and Hadoop-based workloads, researchers can make meaningful performance comparisons on production-scale datasets.”

Lockwood highlighted how this has dramatically reduced the entry barrier for domain scientists who want to see what role Hadoop might play in their analyses, and it follows that training and exploratory work has driven a lot of the Hadoop use SDSC is currently seeing on Gordon.  “Faculty and researchers at universities nationwide have been using Gordon to teach courses in data analytics, and we’ve also been providing plenty of hands-on training to the local and national research communities via XSEDE, SDSC’s Summer Institute, PACE’s Data Mining Boot Camps, and UCSD’s Extension program.  In addition, we’ve provided cycles and classroom training for many applications built upon Hadoop including Mahout, Pig, HBase, and RHadoop.”

In Lockwood’s view, ultimately, Hadoop’s application in the traditional domain sciences is still in its infancy because the application ecosystem based on Hadoop is not as mature as the MPI-based ecosystem.  However, he says there is momentum in several non-traditional domains, including bioinformatics and anthropology, which are embracing Hadoop for production research on Gordon due to the natural fit of these domains’ problems with the map/reduce paradigm. “For example, we are supporting several projects that have begun exploring software built upon Hadoop such as Crossbow, CloudBurst, and SeqPig as scalable alternatives for massive genomic studies.  The evaluation process is still early on, but being able to run these Hadoop-based applications alongside the standard toolchain on Gordon is what is making the effort tractable.”

For anyone interested in the challenges and opportunities of deploying Hadoop on a complex system like Gordon, Lockwood has provided a rich overview here.

Aside from Lockwood’s work and that of his colleagues at SDSC, we wanted to point to some other projects that are helping HPC hack Hadoop to make it fit into a more complex environment. The following short list are a few of our top picks.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays 2017 Wraps Up in Barcelona

May 18, 2017

Barcelona has been absolutely lovely; the weather, the food, the people. I am, sadly, finishing my last day at PRACEdays 2017 with two sessions: an in-depth loo Read more…

By Kim McMahon

US, Europe, Japan Deepen Research Computing Partnership

May 18, 2017

On May 17, 2017, a ceremony was held during the PRACEdays 2017 conference in Barcelona to announce the memorandum of understanding (MOU) between PRACE in Europe Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

NSF, IARPA, and SRC Push into “Semiconductor Synthetic Biology” Computing

May 18, 2017

Research into how biological systems might be fashioned into computational technology has a long history with various DNA-based computing approaches explored. N Read more…

By John Russell

DOE’s HPC4Mfg Leads to Paper Manufacturing Improvement

May 17, 2017

Papermaking ranks third behind only petroleum refining and chemical production in terms of energy consumption. Recently, simulations made possible by the U.S. D Read more…

By John Russell

PRACEdays 2017: The start of a beautiful week in Barcelona

May 17, 2017

Touching down in Barcelona on Saturday afternoon, it was warm, sunny, and oh so Spanish. I was greeted at my hotel with a glass of Cava to sip and treated to a Read more…

By Kim McMahon

NSF Issues $60M RFP for “Towards a Leadership-Class” System

May 16, 2017

In case you missed it, the National Science Foundation issued the request for proposals (RFP) for the next ‘Towards a Leadership-Class Computing Facility – Read more…

By John Russell

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

IBM PowerAI Tools Aim to Ease Deep Learning Data Prep, Shorten Training 

May 10, 2017

A new set of GPU-powered AI software announced by IBM today brings automation to many of the tedious, time consuming and complex aspects of AI project on-rampin Read more…

By Doug Black

Bright Computing 8.0 Adds Azure, Expands Machine Learning Support

May 9, 2017

Bright Computing, long a prominent provider of cluster management tools for HPC, today released version 8.0 of Bright Cluster Manager and Bright OpenStack. The Read more…

By John Russell

Microsoft Azure Will Debut Pascal GPU Instances This Year

May 8, 2017

As Nvidia's GPU Technology Conference gets underway in San Jose, Calif., Microsoft today revealed plans to add Pascal-generation GPU horsepower to its Azure clo Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn't made the task of parallel progr Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This