How HPC is Hacking Hadoop

By Nicole Hemsoth

February 11, 2014

Although the trend may be quiet and distributed across only a relative few supercomputing sites, Hadoop and HPC are hopping hand-in-hand more frequently. These two technology areas aren’t necessarily made for another—there are limitations in what Hadoop can do. But a stretch of recent research has been pushing the possibilities, especially when it comes to making Hadoop fit data-intensive corners of scientific computing applications.

Despite the infrequency of news around Hadoop powering key research applications, we’ve watched key centers on this path, including the San Diego Supercomputer Center (which was one of the first to publish a comprehensive overview of using Hadoop on HPC resources) with great interest, and listened as nearly all major HPC system vendors (and many software ones too) targeted Hadoop users with key enhancements, tailored distributions, or even new product lines.

The research momentum behind Hadoop for HPC systems picked up in the last couple of years in particular. Among notable items are other explorations of Hadoop for data-intensive science, adapting MapReduce to an HPC environment, exploring it across different parallel file systems, handling scheduling and more. There are well over 2,000 peer-reviewed articles covering some aspect of this trend. The general theme, when you map it out and reduce it to a few words, is that the tooling required for HPC systems can be tweaked to fit Hadoop, especially when the purpose (offering a potential for more streamlined data management/processing on certain problems) is clear.

When it comes to data-intensive computing and Hadoop’s potential role in HPC, Dr. Glenn K. Lockwood at the San Diego Supercomputer Center (SDSC), is one of the key sources for information about specific challenges and opportunities. Most notably, Lockwood’s work on Hadoop for large-scale systems has drawn attention, particularly in terms of his work with the open source “big data” platform’s role on the Gordon system at SDSC.

Gordon is SDSC’s flash-based data-intensive computing resource. Although aimed at “big data” scientific computing, the Appro-built system still packs some serious compute power with its 16,160 cores, ranking at #88 on the most recent Top 500 list. The true measure of performance for Gordon, which was built to tackle data-intensive challenges, is in its input/output operations per second (IOPs) measurement—back when the machine was undergoing its acceptance cycle, it achieved 35 million IOPs. All of these elements made for some prime experimental ground for Lockwood and his colleagues.

In his role as a User Services Consultant at SDSC, Lockwood has been tracking a number of projects across the data-intensive computing spectrum. His most recent explorations, aside from running Hadoop clusters on Gordon, include writing Hadoop applications in Python with Hadoop Streaming, using (and finding parallel options for) the R language across supercomputers, and benchmarking several data-intensive computing frameworks, architectures and usage models.

“Although traditional supercomputers and Hadoop clusters are designed to solve very different problems and are consequentially architected differently, domain scientists are becoming increasingly interested in learning how Hadoop works and how it may be useful in addressing the data-intensive problems they face,” explained Lockwood.  “Making Hadoop available on Gordon has really made it easy for researchers to explore the features and benefits of Hadoop without having to learn an entirely new cloud API or be a systems administrator.”

He explained that instead, users can launch a Hadoop cluster by submitting a single pre-made job script to the batch system on Gordon with which they are already familiar. A “personal Hadoop cluster” is then launched on their job’s nodes, and users can then load data into their cluster’s distributed file system and run map/reduce tasks.  “Literally one single qsub command starts up a fully featured Hadoop cluster on Gordon’s 40 Gbps InfiniBand fabric with HDFS that is either backed by Gordon’s 300 GB SSDs or its Lustre filesystem,” said Lockwood. “This translates into Hadoop clusters capable of ingesting data to HDFS at a rate in excess of 750 MB/s and completing a 1.6 TB TeraSort in under 15 minutes. Because Gordon delivers this high performance both in traditional and Hadoop-based workloads, researchers can make meaningful performance comparisons on production-scale datasets.”

Lockwood highlighted how this has dramatically reduced the entry barrier for domain scientists who want to see what role Hadoop might play in their analyses, and it follows that training and exploratory work has driven a lot of the Hadoop use SDSC is currently seeing on Gordon.  “Faculty and researchers at universities nationwide have been using Gordon to teach courses in data analytics, and we’ve also been providing plenty of hands-on training to the local and national research communities via XSEDE, SDSC’s Summer Institute, PACE’s Data Mining Boot Camps, and UCSD’s Extension program.  In addition, we’ve provided cycles and classroom training for many applications built upon Hadoop including Mahout, Pig, HBase, and RHadoop.”

In Lockwood’s view, ultimately, Hadoop’s application in the traditional domain sciences is still in its infancy because the application ecosystem based on Hadoop is not as mature as the MPI-based ecosystem.  However, he says there is momentum in several non-traditional domains, including bioinformatics and anthropology, which are embracing Hadoop for production research on Gordon due to the natural fit of these domains’ problems with the map/reduce paradigm. “For example, we are supporting several projects that have begun exploring software built upon Hadoop such as Crossbow, CloudBurst, and SeqPig as scalable alternatives for massive genomic studies.  The evaluation process is still early on, but being able to run these Hadoop-based applications alongside the standard toolchain on Gordon is what is making the effort tractable.”

For anyone interested in the challenges and opportunities of deploying Hadoop on a complex system like Gordon, Lockwood has provided a rich overview here.

Aside from Lockwood’s work and that of his colleagues at SDSC, we wanted to point to some other projects that are helping HPC hack Hadoop to make it fit into a more complex environment. The following short list are a few of our top picks.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Geospatial Data Research Leverages GPUs

August 17, 2017

MapD Technologies, the GPU-accelerated database specialist, said it is working with university researchers on leveraging graphics processors to advance geospatial analytics. The San Francisco-based company is collabor Read more…

By George Leopold

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Centers (IPCCs) has resulted in a new Big Data Center (BDC) that Read more…

By Linda Barney

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last week the cloud giant released deeplearn.js as part of that in Read more…

By John Russell

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Spoiler Alert: Glimpse Next Week’s Solar Eclipse Via Simulation from TACC, SDSC, and NASA

August 17, 2017

Can’t wait to see next week’s solar eclipse? You can at least catch glimpses of what scientists expect it will look like. A team from Predictive Science Inc. (PSI), based in San Diego, working with Stampede2 at the Read more…

By John Russell

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Leading Solution Providers

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This