Cray Goes Back to the Future for Weather Forecasting

By Nicole Hemsoth

February 16, 2014

Weather forecasting has come a long way since June of 1977, when the European Centre for Medium Range Weather Forecasts (ECMWF) first contracted Cray to deliver one of its early Cray-1A systems across the pond. This was the first time a Cray found its way to the old country—an installation that set the stage for a number of new deployments of both vector and shared memory systems to power European weather prediction over the next several decades.

The first Cray system at ECMWF enabled the weather center to offer a 10-day forecast powered by a weather model that achieved sustained performance of 50 megaflops (against the system’s theoretical peak of 160 megaflops). These systems were followed by the Cray X-MP/22, then an X-MP/48, followed by the Y-MP 8/8-64, C90 (with a gigaflop of theoretical peak), and then into shared memory territory with the T3D. This was the last system ECMWF bought for a stretch in favor of Fujitsu and then Power-based systems from IBM. Now, 36 years after choosing their first Cray system, EMCWF is taking the supercomputing back.

The Big Blue machines that are being swapped out for the XC30 early this year were ranked at 51 and 52 on the most recent Top500. If you’re wondering why there are two systems of equal proportions that are essentially tied, it’s because specific operational requirements demand a two-machine approach for centers who provide model outputs that power the weather forecasting efforts of an entire continent—as is the case with ECMWF.

Isabella Weger, who heads the Computer Division at the weather center (and has been instrumental in the two-cluster approach decision that set the trend for other weather modeling centers worldwide) explained that having separate clusters in the datacenter offers more resilience for operational forecasts.” In essence, one system runs the center’s operational forecasts, which are the critical products they deliver to the 20 member states and 14 co-operative states in Europe that our models for regional and local weather forecasting.” The other cluster runs the center’s research workloads, which includes activities centered on improving their numerical weather prediction model and offering a more comprehensive view into atmospheric behavior.

While both clusters are busy chewing on their own workloads, all operational data is available to both machines. The dual storage clusters, which will now be Cray Sonexion-based systems, are cross-mounted across the compute clusters so EMCWF has access to the data readily available in the event that they need to restart the forecast during a system upgrades or problems.

Although Weger and team set the dual-cluster trend at ECMWF, this is a rather unique approach to continuity in Cray CEO, Pete Ungaro’s experience. As he told us, “we haven’t seen this kind of configuration outside of operational weather forecasting centers, really. Most people that are using our machines for research tend to build the single biggest engine they can. However, the operational requirements we see even in demanding commercial markets are not as evenly focused from an operational standpoint as what EMCWF and other major weather centers need.”

This dual-approach to cluster and storage scenarios is the direct result of Isabella and team’s need to ensure constant delivery of the critical forecasting models centers in Europe rely on. And the data’s importance doesn’t end there—EMCWF has an extensive tape library of model outputs from decades gone by which totals over 50 petabytes of historical climate data. Further, she says their system generates around 50 terabytes per day. These data are used by climate and atmospheric scientists around the world who require detailed data from outdated model output for advanced climate change and other longer-range atmospheric studies.

For now, however, it’s about adding more fine-tuned resolution to the models to better help governments prepare for weather events. “If you imagine a grid around the globe, our current model resolution is 16 km between grid points and our plan is in 2015 timeframe to go to a finer resolution of 10 km, hence the driver for compute resources.”

All of this takes some serious compute horsepower, which beginning early this year, will mean the use of the Aries interconnected Cray XC30 “Cascade” supercomputer with a multi-petabyte Sonexion storage system—again, split into two separate clusters. Ungaro described the environment as accelerator-free (although the system is capable and Weger said they are considering the future of accelerators for their application) noting that “each of these [Ivy Bridge] systems are in two different halls, each about 19 cabinets, about 3,600 nodes, all interconnected with our Aries interconnect, so about 80,000 cores in each of the machines.”

To put all of this compute into some context, keep in mind that over 60 million observations are factored into the overall forecasting model at EMCWF. It starts with observations, which come from a range of sources, many from satellites, others including ground based observational tools, buoys, and airplanes. These observations provide the baseline for the forecast.

“We take these many observations and process them to drive a base point for the atmosphere,” Weger explains. “These are all observations from different points in time and space, and we must snap these into a grid of sorts that spans the globe in the proper space and time.” This is EMCWF’s process of “data assimilation” which in itself is both data and computationally-intensive—and it all happens before the forecast model has begun.

Complex forecasting is not a “one-shot” system. Since no forecast is perfect, a sense of probability for weather events must also be calculated. “We run an ensemble of 51 forecasts per day, each with some changes in the initial conditions to get a sense of probability. If you relate this to a hurricane, for instance, the model gives you the projected track of the storm with different conditions.”

“It’s about performance, of course, but also very important are resilience and reliability and also, portability,” added Weger. She notes that they strive to keep their forecasting system portable across architectures so that with each procurement cycle they have many vendor choices. “The application is mainly Fortran and whenever we optimize or develop code we try to make sure it doesn’t inhibit us from making architecture choices–we don’t want to be locked into a specific vendor or architecture.”

While Weger didn’t comment on their experiences using the IBM Power architecture, she and Ungaro both agreed that the benchmarking and procurement process was lengthy and detailed. EMCWF has a scientific and operational 10 year strategy that defines the upgrades they do across their model (called the Intergrated Forecasting System, which is the code comprises the model and data assimilation). Much of their upgrades are driven by the need for a lot of computing resources to power increases in model resolution, thus allowing the center to use more observational data and offer a better representation of the physics in the atmosphere in the model itself.

Adding more computational power to the forecasts makes quite a difference over time. While it might not sound like much in passing, the ability to add one more day of quality forecasting per decade, could make an incredible difference during potentially severe weather events. “A seven-day forecast today is as accurate as a 5 day forecast was 20 years,” explained Weger.

Ungaro, who was in the room during our chat with Weger, was beaming by the end of the conversation when the topic went back to the “full circle” nature of this new system at ECMWF. “We are very proud to have this kind of history and to help provide the systems that can save lives and make such a difference in the world,” he said.

While we might be able to do some speculative math on the potential placement of the new Cray system on the next Top 500 list—and its ability to provide more power for the models than the IBM Power-based system, time will tell. We’ll check in on this story again once the system appears on the June list.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

And So It Begins…Again – The FY19 Exascale Budget Rollout (and things look good)

February 23, 2018

On February 12, 2018, the Trump administration submitted its Fiscal Year 2019 (FY-19) budget to Congress. The good news for the U.S. exascale program is that the numbers look very good and the support appears to be stron Read more…

By Alex R. Larzelere

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with partner Leibniz Supercomputing Center (LRZ) in Germany. The ser Read more…

By Tiffany Trader

Start-up Aims AI at Automated Tuning of Complex Systems

February 22, 2018

Today’s bigger, more complex, connected and intelligent systems have an exponentially higher number of connections, dependencies, interfaces, protocols and processing architectures that, if not optimized, will hamstrin Read more…

By Doug Black

HPE Extreme Performance Solutions

Experience Memory & Storage Solutions that will Transform Your Data Performance

High performance computing (HPC) has revolutionized the way we harness insight, leading to a dramatic increase in both the size and complexity of HPC systems. Read more…

Do Cryptocurrencies Have a Part to Play in HPC?

February 22, 2018

It’s easy to be distracted by news from the US, China, and now the EU on the state of various exascale projects, but behind the vinyl-wrapped cabinets and well-groomed sales execs are an army of Excel-wielding PMO and Read more…

By Chris Downing

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Start-up Aims AI at Automated Tuning of Complex Systems

February 22, 2018

Today’s bigger, more complex, connected and intelligent systems have an exponentially higher number of connections, dependencies, interfaces, protocols and pr Read more…

By Doug Black

HOKUSAI’s BigWaterfall Cluster Extends RIKEN’s Supercomputing Performance

February 21, 2018

RIKEN, Japan’s largest comprehensive research institution, recently expanded the capacity and capabilities of its HOKUSAI supercomputer, a key resource manage Read more…

By Ken Strandberg

Neural Networking Shows Promise in Earthquake Monitoring

February 21, 2018

A team of Harvard University and MIT researchers report their new neural networking method for monitoring earthquakes is more accurate and orders of magnitude faster than traditional approaches. Read more…

By John Russell

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penal Read more…

By Pete Beckman

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

V100 Good but not Great on Select Deep Learning Aps, Says Xcelerit

November 27, 2017

Wringing optimum performance from hardware to accelerate deep learning applications is a challenge that often depends on the specific application in use. A benc Read more…

By John Russell

SC17: Singularity Preps Version 3.0, Nears 1M Containers Served Daily

November 1, 2017

Just a few months ago about half a million jobs were being run daily using Singularity containers, the LBNL-founded container platform intended for HPC. That wa Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This