Cray Goes Back to the Future for Weather Forecasting

By Nicole Hemsoth

February 16, 2014

Weather forecasting has come a long way since June of 1977, when the European Centre for Medium Range Weather Forecasts (ECMWF) first contracted Cray to deliver one of its early Cray-1A systems across the pond. This was the first time a Cray found its way to the old country—an installation that set the stage for a number of new deployments of both vector and shared memory systems to power European weather prediction over the next several decades.

The first Cray system at ECMWF enabled the weather center to offer a 10-day forecast powered by a weather model that achieved sustained performance of 50 megaflops (against the system’s theoretical peak of 160 megaflops). These systems were followed by the Cray X-MP/22, then an X-MP/48, followed by the Y-MP 8/8-64, C90 (with a gigaflop of theoretical peak), and then into shared memory territory with the T3D. This was the last system ECMWF bought for a stretch in favor of Fujitsu and then Power-based systems from IBM. Now, 36 years after choosing their first Cray system, EMCWF is taking the supercomputing back.

The Big Blue machines that are being swapped out for the XC30 early this year were ranked at 51 and 52 on the most recent Top500. If you’re wondering why there are two systems of equal proportions that are essentially tied, it’s because specific operational requirements demand a two-machine approach for centers who provide model outputs that power the weather forecasting efforts of an entire continent—as is the case with ECMWF.

Isabella Weger, who heads the Computer Division at the weather center (and has been instrumental in the two-cluster approach decision that set the trend for other weather modeling centers worldwide) explained that having separate clusters in the datacenter offers more resilience for operational forecasts.” In essence, one system runs the center’s operational forecasts, which are the critical products they deliver to the 20 member states and 14 co-operative states in Europe that our models for regional and local weather forecasting.” The other cluster runs the center’s research workloads, which includes activities centered on improving their numerical weather prediction model and offering a more comprehensive view into atmospheric behavior.

While both clusters are busy chewing on their own workloads, all operational data is available to both machines. The dual storage clusters, which will now be Cray Sonexion-based systems, are cross-mounted across the compute clusters so EMCWF has access to the data readily available in the event that they need to restart the forecast during a system upgrades or problems.

Although Weger and team set the dual-cluster trend at ECMWF, this is a rather unique approach to continuity in Cray CEO, Pete Ungaro’s experience. As he told us, “we haven’t seen this kind of configuration outside of operational weather forecasting centers, really. Most people that are using our machines for research tend to build the single biggest engine they can. However, the operational requirements we see even in demanding commercial markets are not as evenly focused from an operational standpoint as what EMCWF and other major weather centers need.”

This dual-approach to cluster and storage scenarios is the direct result of Isabella and team’s need to ensure constant delivery of the critical forecasting models centers in Europe rely on. And the data’s importance doesn’t end there—EMCWF has an extensive tape library of model outputs from decades gone by which totals over 50 petabytes of historical climate data. Further, she says their system generates around 50 terabytes per day. These data are used by climate and atmospheric scientists around the world who require detailed data from outdated model output for advanced climate change and other longer-range atmospheric studies.

For now, however, it’s about adding more fine-tuned resolution to the models to better help governments prepare for weather events. “If you imagine a grid around the globe, our current model resolution is 16 km between grid points and our plan is in 2015 timeframe to go to a finer resolution of 10 km, hence the driver for compute resources.”

All of this takes some serious compute horsepower, which beginning early this year, will mean the use of the Aries interconnected Cray XC30 “Cascade” supercomputer with a multi-petabyte Sonexion storage system—again, split into two separate clusters. Ungaro described the environment as accelerator-free (although the system is capable and Weger said they are considering the future of accelerators for their application) noting that “each of these [Ivy Bridge] systems are in two different halls, each about 19 cabinets, about 3,600 nodes, all interconnected with our Aries interconnect, so about 80,000 cores in each of the machines.”

To put all of this compute into some context, keep in mind that over 60 million observations are factored into the overall forecasting model at EMCWF. It starts with observations, which come from a range of sources, many from satellites, others including ground based observational tools, buoys, and airplanes. These observations provide the baseline for the forecast.

“We take these many observations and process them to drive a base point for the atmosphere,” Weger explains. “These are all observations from different points in time and space, and we must snap these into a grid of sorts that spans the globe in the proper space and time.” This is EMCWF’s process of “data assimilation” which in itself is both data and computationally-intensive—and it all happens before the forecast model has begun.

Complex forecasting is not a “one-shot” system. Since no forecast is perfect, a sense of probability for weather events must also be calculated. “We run an ensemble of 51 forecasts per day, each with some changes in the initial conditions to get a sense of probability. If you relate this to a hurricane, for instance, the model gives you the projected track of the storm with different conditions.”

“It’s about performance, of course, but also very important are resilience and reliability and also, portability,” added Weger. She notes that they strive to keep their forecasting system portable across architectures so that with each procurement cycle they have many vendor choices. “The application is mainly Fortran and whenever we optimize or develop code we try to make sure it doesn’t inhibit us from making architecture choices–we don’t want to be locked into a specific vendor or architecture.”

While Weger didn’t comment on their experiences using the IBM Power architecture, she and Ungaro both agreed that the benchmarking and procurement process was lengthy and detailed. EMCWF has a scientific and operational 10 year strategy that defines the upgrades they do across their model (called the Intergrated Forecasting System, which is the code comprises the model and data assimilation). Much of their upgrades are driven by the need for a lot of computing resources to power increases in model resolution, thus allowing the center to use more observational data and offer a better representation of the physics in the atmosphere in the model itself.

Adding more computational power to the forecasts makes quite a difference over time. While it might not sound like much in passing, the ability to add one more day of quality forecasting per decade, could make an incredible difference during potentially severe weather events. “A seven-day forecast today is as accurate as a 5 day forecast was 20 years,” explained Weger.

Ungaro, who was in the room during our chat with Weger, was beaming by the end of the conversation when the topic went back to the “full circle” nature of this new system at ECMWF. “We are very proud to have this kind of history and to help provide the systems that can save lives and make such a difference in the world,” he said.

While we might be able to do some speculative math on the potential placement of the new Cray system on the next Top 500 list—and its ability to provide more power for the models than the IBM Power-based system, time will tell. We’ll check in on this story again once the system appears on the June list.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 8, 2016)

December 8, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Qualcomm Targets Intel Datacenter Dominance with 10nm ARM-based Server Chip

December 8, 2016

Claiming no less than a reshaping of the future of Intel-dominated datacenter computing, Qualcomm Technologies, the market leader in smartphone chips, announced the forthcoming availability of what it says is the world’s first 10nm processor for servers, based on ARM Holding’s chip designs. Read more…

By Doug Black

Which Schools Produce the Top Coders in the World?

December 8, 2016

Ever wonder which universities worldwide produce the best coders? The answers may surprise you, at least as judged by the results of a competition posted yesterday on the HackerRank blog. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

Leading Solution Providers

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This