Cray Goes Back to the Future for Weather Forecasting

By Nicole Hemsoth

February 16, 2014

Weather forecasting has come a long way since June of 1977, when the European Centre for Medium Range Weather Forecasts (ECMWF) first contracted Cray to deliver one of its early Cray-1A systems across the pond. This was the first time a Cray found its way to the old country—an installation that set the stage for a number of new deployments of both vector and shared memory systems to power European weather prediction over the next several decades.

The first Cray system at ECMWF enabled the weather center to offer a 10-day forecast powered by a weather model that achieved sustained performance of 50 megaflops (against the system’s theoretical peak of 160 megaflops). These systems were followed by the Cray X-MP/22, then an X-MP/48, followed by the Y-MP 8/8-64, C90 (with a gigaflop of theoretical peak), and then into shared memory territory with the T3D. This was the last system ECMWF bought for a stretch in favor of Fujitsu and then Power-based systems from IBM. Now, 36 years after choosing their first Cray system, EMCWF is taking the supercomputing back.

The Big Blue machines that are being swapped out for the XC30 early this year were ranked at 51 and 52 on the most recent Top500. If you’re wondering why there are two systems of equal proportions that are essentially tied, it’s because specific operational requirements demand a two-machine approach for centers who provide model outputs that power the weather forecasting efforts of an entire continent—as is the case with ECMWF.

Isabella Weger, who heads the Computer Division at the weather center (and has been instrumental in the two-cluster approach decision that set the trend for other weather modeling centers worldwide) explained that having separate clusters in the datacenter offers more resilience for operational forecasts.” In essence, one system runs the center’s operational forecasts, which are the critical products they deliver to the 20 member states and 14 co-operative states in Europe that our models for regional and local weather forecasting.” The other cluster runs the center’s research workloads, which includes activities centered on improving their numerical weather prediction model and offering a more comprehensive view into atmospheric behavior.

While both clusters are busy chewing on their own workloads, all operational data is available to both machines. The dual storage clusters, which will now be Cray Sonexion-based systems, are cross-mounted across the compute clusters so EMCWF has access to the data readily available in the event that they need to restart the forecast during a system upgrades or problems.

Although Weger and team set the dual-cluster trend at ECMWF, this is a rather unique approach to continuity in Cray CEO, Pete Ungaro’s experience. As he told us, “we haven’t seen this kind of configuration outside of operational weather forecasting centers, really. Most people that are using our machines for research tend to build the single biggest engine they can. However, the operational requirements we see even in demanding commercial markets are not as evenly focused from an operational standpoint as what EMCWF and other major weather centers need.”

This dual-approach to cluster and storage scenarios is the direct result of Isabella and team’s need to ensure constant delivery of the critical forecasting models centers in Europe rely on. And the data’s importance doesn’t end there—EMCWF has an extensive tape library of model outputs from decades gone by which totals over 50 petabytes of historical climate data. Further, she says their system generates around 50 terabytes per day. These data are used by climate and atmospheric scientists around the world who require detailed data from outdated model output for advanced climate change and other longer-range atmospheric studies.

For now, however, it’s about adding more fine-tuned resolution to the models to better help governments prepare for weather events. “If you imagine a grid around the globe, our current model resolution is 16 km between grid points and our plan is in 2015 timeframe to go to a finer resolution of 10 km, hence the driver for compute resources.”

All of this takes some serious compute horsepower, which beginning early this year, will mean the use of the Aries interconnected Cray XC30 “Cascade” supercomputer with a multi-petabyte Sonexion storage system—again, split into two separate clusters. Ungaro described the environment as accelerator-free (although the system is capable and Weger said they are considering the future of accelerators for their application) noting that “each of these [Ivy Bridge] systems are in two different halls, each about 19 cabinets, about 3,600 nodes, all interconnected with our Aries interconnect, so about 80,000 cores in each of the machines.”

To put all of this compute into some context, keep in mind that over 60 million observations are factored into the overall forecasting model at EMCWF. It starts with observations, which come from a range of sources, many from satellites, others including ground based observational tools, buoys, and airplanes. These observations provide the baseline for the forecast.

“We take these many observations and process them to drive a base point for the atmosphere,” Weger explains. “These are all observations from different points in time and space, and we must snap these into a grid of sorts that spans the globe in the proper space and time.” This is EMCWF’s process of “data assimilation” which in itself is both data and computationally-intensive—and it all happens before the forecast model has begun.

Complex forecasting is not a “one-shot” system. Since no forecast is perfect, a sense of probability for weather events must also be calculated. “We run an ensemble of 51 forecasts per day, each with some changes in the initial conditions to get a sense of probability. If you relate this to a hurricane, for instance, the model gives you the projected track of the storm with different conditions.”

“It’s about performance, of course, but also very important are resilience and reliability and also, portability,” added Weger. She notes that they strive to keep their forecasting system portable across architectures so that with each procurement cycle they have many vendor choices. “The application is mainly Fortran and whenever we optimize or develop code we try to make sure it doesn’t inhibit us from making architecture choices–we don’t want to be locked into a specific vendor or architecture.”

While Weger didn’t comment on their experiences using the IBM Power architecture, she and Ungaro both agreed that the benchmarking and procurement process was lengthy and detailed. EMCWF has a scientific and operational 10 year strategy that defines the upgrades they do across their model (called the Intergrated Forecasting System, which is the code comprises the model and data assimilation). Much of their upgrades are driven by the need for a lot of computing resources to power increases in model resolution, thus allowing the center to use more observational data and offer a better representation of the physics in the atmosphere in the model itself.

Adding more computational power to the forecasts makes quite a difference over time. While it might not sound like much in passing, the ability to add one more day of quality forecasting per decade, could make an incredible difference during potentially severe weather events. “A seven-day forecast today is as accurate as a 5 day forecast was 20 years,” explained Weger.

Ungaro, who was in the room during our chat with Weger, was beaming by the end of the conversation when the topic went back to the “full circle” nature of this new system at ECMWF. “We are very proud to have this kind of history and to help provide the systems that can save lives and make such a difference in the world,” he said.

While we might be able to do some speculative math on the potential placement of the new Cray system on the next Top 500 list—and its ability to provide more power for the models than the IBM Power-based system, time will tell. We’ll check in on this story again once the system appears on the June list.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Nvidia P100 Shows 1.3-2.3x Speedup Over K80 GPU on Financial Apps

April 20, 2017

When it comes to the true performance of the latest silicon, every end user knows that the best processor is the one that works best for their application. Read more…

By Tiffany Trader

Quantum Adds Global Smarts to StorNext File System

April 20, 2017

Companies that use Quantum’s StorNext platform to store massive amounts of data this week got a glimpse of new storage capabilities that should make it easier to access their data horde from anywhere in the world. Read more…

By Alex Woodie

HPE Extreme Performance Solutions

HPC-Driven Weather Simulations Improving Forecasting Capabilities

In September of 1938, a massive hurricane traversed the Atlantic Ocean and made landfall in New England. Due to inadequate and incorrect forecasting, the storm struck farther north and with greater intensity than had been predicted, leaving residents and authorities with virtually no warning or time to properly prepare. Read more…

Scaling an HPC Career in Nepal Can Be a Steep Climb

April 20, 2017

Umesh Upadhyaya works as an IT Associate at the International Centre for Integrated Mountain Development (ICIMOD) in Nepal, which supports the country’s one and only HPC facility. He is directly involved in an initiative that focuses on climate change and atmosphere modeling Read more…

By Nages Sieslack

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Intel Open Sources All Lustre Work, Brent Gorda Exits

April 19, 2017

In a letter to the Lustre community posted on the Intel website, Vice President of Intel's Data Center Group Trish Damkroger writes that effective immediately the company will be contributing all Lustre development to the open source community. Damkroger also announced that Brent Gorda, General Manager, High Performance Data Division at Intel is leaving the company. Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Penguin Takes a Run at the Big Cloud Providers

April 12, 2017

HPC specialist Penguin Computing recently re-ran benchmarks from a study of its larger brethren and says the results show its ‘public cloud’ – Penguin on Demand (POD) – is among the leaders in cost and performance. Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

HPC and the Colocation Datacenter – a Bridge Too Far?

April 7, 2017

A more standardised HPC platform approach is making the running of HPC projects within increasing financial reach. Read more…

By Clive Longbottom, Quocirca

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This