Cray Goes Back to the Future for Weather Forecasting

By Nicole Hemsoth

February 16, 2014

Weather forecasting has come a long way since June of 1977, when the European Centre for Medium Range Weather Forecasts (ECMWF) first contracted Cray to deliver one of its early Cray-1A systems across the pond. This was the first time a Cray found its way to the old country—an installation that set the stage for a number of new deployments of both vector and shared memory systems to power European weather prediction over the next several decades.

The first Cray system at ECMWF enabled the weather center to offer a 10-day forecast powered by a weather model that achieved sustained performance of 50 megaflops (against the system’s theoretical peak of 160 megaflops). These systems were followed by the Cray X-MP/22, then an X-MP/48, followed by the Y-MP 8/8-64, C90 (with a gigaflop of theoretical peak), and then into shared memory territory with the T3D. This was the last system ECMWF bought for a stretch in favor of Fujitsu and then Power-based systems from IBM. Now, 36 years after choosing their first Cray system, EMCWF is taking the supercomputing back.

The Big Blue machines that are being swapped out for the XC30 early this year were ranked at 51 and 52 on the most recent Top500. If you’re wondering why there are two systems of equal proportions that are essentially tied, it’s because specific operational requirements demand a two-machine approach for centers who provide model outputs that power the weather forecasting efforts of an entire continent—as is the case with ECMWF.

Isabella Weger, who heads the Computer Division at the weather center (and has been instrumental in the two-cluster approach decision that set the trend for other weather modeling centers worldwide) explained that having separate clusters in the datacenter offers more resilience for operational forecasts.” In essence, one system runs the center’s operational forecasts, which are the critical products they deliver to the 20 member states and 14 co-operative states in Europe that our models for regional and local weather forecasting.” The other cluster runs the center’s research workloads, which includes activities centered on improving their numerical weather prediction model and offering a more comprehensive view into atmospheric behavior.

While both clusters are busy chewing on their own workloads, all operational data is available to both machines. The dual storage clusters, which will now be Cray Sonexion-based systems, are cross-mounted across the compute clusters so EMCWF has access to the data readily available in the event that they need to restart the forecast during a system upgrades or problems.

Although Weger and team set the dual-cluster trend at ECMWF, this is a rather unique approach to continuity in Cray CEO, Pete Ungaro’s experience. As he told us, “we haven’t seen this kind of configuration outside of operational weather forecasting centers, really. Most people that are using our machines for research tend to build the single biggest engine they can. However, the operational requirements we see even in demanding commercial markets are not as evenly focused from an operational standpoint as what EMCWF and other major weather centers need.”

This dual-approach to cluster and storage scenarios is the direct result of Isabella and team’s need to ensure constant delivery of the critical forecasting models centers in Europe rely on. And the data’s importance doesn’t end there—EMCWF has an extensive tape library of model outputs from decades gone by which totals over 50 petabytes of historical climate data. Further, she says their system generates around 50 terabytes per day. These data are used by climate and atmospheric scientists around the world who require detailed data from outdated model output for advanced climate change and other longer-range atmospheric studies.

For now, however, it’s about adding more fine-tuned resolution to the models to better help governments prepare for weather events. “If you imagine a grid around the globe, our current model resolution is 16 km between grid points and our plan is in 2015 timeframe to go to a finer resolution of 10 km, hence the driver for compute resources.”

All of this takes some serious compute horsepower, which beginning early this year, will mean the use of the Aries interconnected Cray XC30 “Cascade” supercomputer with a multi-petabyte Sonexion storage system—again, split into two separate clusters. Ungaro described the environment as accelerator-free (although the system is capable and Weger said they are considering the future of accelerators for their application) noting that “each of these [Ivy Bridge] systems are in two different halls, each about 19 cabinets, about 3,600 nodes, all interconnected with our Aries interconnect, so about 80,000 cores in each of the machines.”

To put all of this compute into some context, keep in mind that over 60 million observations are factored into the overall forecasting model at EMCWF. It starts with observations, which come from a range of sources, many from satellites, others including ground based observational tools, buoys, and airplanes. These observations provide the baseline for the forecast.

“We take these many observations and process them to drive a base point for the atmosphere,” Weger explains. “These are all observations from different points in time and space, and we must snap these into a grid of sorts that spans the globe in the proper space and time.” This is EMCWF’s process of “data assimilation” which in itself is both data and computationally-intensive—and it all happens before the forecast model has begun.

Complex forecasting is not a “one-shot” system. Since no forecast is perfect, a sense of probability for weather events must also be calculated. “We run an ensemble of 51 forecasts per day, each with some changes in the initial conditions to get a sense of probability. If you relate this to a hurricane, for instance, the model gives you the projected track of the storm with different conditions.”

“It’s about performance, of course, but also very important are resilience and reliability and also, portability,” added Weger. She notes that they strive to keep their forecasting system portable across architectures so that with each procurement cycle they have many vendor choices. “The application is mainly Fortran and whenever we optimize or develop code we try to make sure it doesn’t inhibit us from making architecture choices–we don’t want to be locked into a specific vendor or architecture.”

While Weger didn’t comment on their experiences using the IBM Power architecture, she and Ungaro both agreed that the benchmarking and procurement process was lengthy and detailed. EMCWF has a scientific and operational 10 year strategy that defines the upgrades they do across their model (called the Intergrated Forecasting System, which is the code comprises the model and data assimilation). Much of their upgrades are driven by the need for a lot of computing resources to power increases in model resolution, thus allowing the center to use more observational data and offer a better representation of the physics in the atmosphere in the model itself.

Adding more computational power to the forecasts makes quite a difference over time. While it might not sound like much in passing, the ability to add one more day of quality forecasting per decade, could make an incredible difference during potentially severe weather events. “A seven-day forecast today is as accurate as a 5 day forecast was 20 years,” explained Weger.

Ungaro, who was in the room during our chat with Weger, was beaming by the end of the conversation when the topic went back to the “full circle” nature of this new system at ECMWF. “We are very proud to have this kind of history and to help provide the systems that can save lives and make such a difference in the world,” he said.

While we might be able to do some speculative math on the potential placement of the new Cray system on the next Top 500 list—and its ability to provide more power for the models than the IBM Power-based system, time will tell. We’ll check in on this story again once the system appears on the June list.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Weekly Twitter Roundup (Jan. 12, 2017)

January 12, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

NSF Seeks Input on Cyberinfrastructure Advances Needed

January 12, 2017

In cased you missed it, the National Science Foundation posted a “Dear Colleague Letter” (DCL) late last week seeking input on needs for the next generation of cyberinfrastructure to support science and engineering. Read more…

By John Russell

NSF Approves Bridges Phase 2 Upgrade for Broader Research Use

January 12, 2017

The recently completed phase 2 upgrade of the Bridges supercomputer at the Pittsburgh Supercomputing Center (PSC) has been approved by the National Science Foundation (NSF) making it now available for research allocations to the national scientific community, according to an announcement posted this week on the XSEDE web site. Read more…

By John Russell

Clemson Software Optimizes Big Data Transfers

January 11, 2017

Data-intensive science is not a new phenomenon as the high-energy physics and astrophysics communities can certainly attest, but today more and more scientists are facing steep data and throughput challenges fueled by soaring data volumes and the demands of global-scale collaboration. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Remote Visualization: An Integral Technology for Upstream Oil & Gas

As the exploration and production (E&P) of natural resources evolves into an even more complex and vital task, visualization technology has become integral for the upstream oil and gas industry. Read more…

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

UberCloud Cites Progress in HPC Cloud Computing

January 10, 2017

200 HPC cloud experiments, 80 case studies, and a ton of hands-on experience gained, that’s the harvest of four years of UberCloud HPC Experiments. Read more…

By Wolfgang Gentzsch and Burak Yenier

A Conversation with Women in HPC Director Toni Collis

January 6, 2017

In this SC16 video interview, HPCwire Managing Editor Tiffany Trader sits down with Toni Collis, the director and founder of the Women in HPC (WHPC) network, to discuss the strides made since the organization’s debut in 2014. Read more…

By Tiffany Trader

FPGA-Based Genome Processor Bundles Storage

January 6, 2017

Bio-processor developer Edico Genome is collaborating with storage specialist Dell EMC to bundle computing and storage for analyzing gene-sequencing data. Read more…

By George Leopold

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

UberCloud Cites Progress in HPC Cloud Computing

January 10, 2017

200 HPC cloud experiments, 80 case studies, and a ton of hands-on experience gained, that’s the harvest of four years of UberCloud HPC Experiments. Read more…

By Wolfgang Gentzsch and Burak Yenier

A Conversation with Women in HPC Director Toni Collis

January 6, 2017

In this SC16 video interview, HPCwire Managing Editor Tiffany Trader sits down with Toni Collis, the director and founder of the Women in HPC (WHPC) network, to discuss the strides made since the organization’s debut in 2014. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Fast Rewind: 2016 Was a Wild Ride for HPC

December 23, 2016

Some years quietly sneak by – 2016 not so much. It’s safe to say there are always forces reshaping the HPC landscape but this year’s bunch seemed like a noisy lot. Among the noisemakers: TaihuLight, DGX-1/Pascal, Dell EMC & HPE-SGI et al., KNL to market, OPA-IB chest thumping, Fujitsu-ARM, new U.S. President-elect, BREXIT, JR’s Intel Exit, Exascale (whatever that means now), NCSA@30, whither NSCI, Deep Learning mania, HPC identity crisis…You get the picture. Read more…

By John Russell

AWI Uses New Cray Cluster for Earth Sciences and Bioinformatics

December 22, 2016

The Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), headquartered in Bremerhaven, Germany, is one of the country's premier research institutes within the Helmholtz Association of German Research Centres, and is an internationally respected center of expertise for polar and marine research. In November 2015, AWI awarded Cray a contract to install a cluster supercomputer that would help the institute accelerate time to discovery. Now the effort is starting to pay off. Read more…

By Linda Barney

Addison Snell: The ‘Wild West’ of HPC Disaggregation

December 16, 2016

We caught up with Addison Snell, CEO of HPC industry watcher Intersect360, at SC16 last month, and Snell had his expected, extensive list of insights into trends driving advanced-scale technology in both the commercial and research sectors. Read more…

By Doug Black

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Leading Solution Providers

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

New Genomics Pipeline Combines AWS, Local HPC, and Supercomputing

September 22, 2016

Declining DNA sequencing costs and the rush to do whole genome sequencing (WGS) of large cohort populations – think 5000 subjects now, but many more thousands soon – presents a formidable computational challenge to researchers attempting to make sense of large cohort datasets. Read more…

By John Russell

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Deep Learning Paves Way for Better Diagnostics

September 19, 2016

Stanford researchers are leveraging GPU-based machines in the Amazon EC2 cloud to run deep learning workloads with the goal of improving diagnostics for a chronic eye disease, called diabetic retinopathy. The disease is a complication of diabetes that can lead to blindness if blood sugar is poorly controlled. It affects about 45 percent of diabetics and 100 million people worldwide, many in developing nations. Read more…

By Tiffany Trader

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This