Intel Etches HPC Niche with Xeon E7 V2

By Nicole Hemsoth

February 18, 2014

Intel has finally pulled the lid off their Westmere-followup processors with the new Xeon E7 v2 series, which while generally targeting enterprise big data and analytics workloads, offers far more for HPC than might meet the eye.

Despite the range of targeted application areas, the 22 nanometer process, memory capabilities, robust AVX instruction capabilities, and unique reliability features make this well suited for HPC. Intel has managed to slice a sizable piece of performance to create a 120-core “HPC cluster in a box” that while higher in price than the previous Ivy Bridges that rolled out last September, could be a suitable fit for a wide swath of technical computing workloads.

As Intel’s Joe Curley told us today, “The E7s offer a ton of density in a node and this is indeed a great HPC story–as well as a great big data and enterprise story. Any type of application where you need a lot of memory and reliability and you’re doing a long set of calculations, that’s where the E7 set of products is going to do really well for you.” You end up with 120 cores in a node, 12 terabytes of memory maximum, you can fit a lot of density and compute there and there are HPC and many other workloads that this will be ideal for.”

Before we dive into the specifics, it’s worth acknowledging that one of the most fascinating aspects of this more general E7 v2 announcement is how Intel was able to balance out a multitude of goals and targets for a wide range of potential workloads via a segmentation model. It would have been perfectly feasible for this same news to span across several versions of the same essential chip sporting variations in cache or clock speeds—but these are actually well-optimized for the workloads being targeted and can be broken down along multiple lines according to priorities (power draw, memory and cache requirements, clock speed, etc.). In other words, the marketing for the E7 v2 is that there’s almost guaranteed to be something for everyone, in all price ranges and across nearly all workloads.

For context, take a look below at the two comparison charts that compare the Westmere predecessor (the E7-4800) with against SPEC (at the top) and then according to LINPACK performance just underneath.

 slide70And for LINPACK

slide71

The AVX capabilities are another noteworthy feature in these new processors—a point to consider with the LINPACK slide above. The 256-bit AVX vector units in the Ivy Bridge core can do eight double-precision floating point calculations per clock cycle via two AVX units per core (4 per AVX unit). This is good news for HPC on this front since the Westmere didn’t have any AVX at all.

The thing to notice here is that if you look below at the figures with 15 cores operating on this level, you’re looking at 1.246 teraflops—which is right on par with the Xeon Phi. Theoretically, this means that for those who aren’t concerned with the price (and the difference is quite hefty) it’s possible to circumvent the Xeon Phi and the programming talent required to get code up to snuff entirely and stock a cluster with these parts instead. Whether or not shops will consider this is up in the air—especially since this comparison won’t be valid by next year if rumors are correct and a three-teraflop Phi chip actually emerges.

According to Curley, “The products complement each other. Each Xeon Phi coprocessor has greater peak FLOPS and memory bandwidth per device, but lower memory capacity. The Xeon E7 Family provides very large memory capacity per processor, and allows up to 8 processors per node.”

The products address different application spaces for the most part, but as part of a portfolio produce an outstanding economic return for application developers, said Curley. “The Intel Xeon E7 Family is optimized for computing with memory density per node, superior results when compared to RISC and mainframe alternatives, and server consolidation markets. Xeon Phi addresses highly parallel applications that can take maximum benefit of Xeon Phi’s performance per watt.”

But the key advantage between them remains that applications optimized for Xeon Phi use the same core, thread, and SIMD elements – meaning applications optimized for one can be moved to the other – a critical advantage for developers.

Take a look at the chart below, which shows the 20 ways you can slice the E7 v2 for 2, 4 and 8 socket variants across different workload types via the basic, standard and advanced configurations, all of which offer some notable tradeoffs (or none at all for the big spenders) in core counts, cache and clock speeds to fit a variety of both memory, compute and energy demands. The segment optimized for HPC (bottom right with my red arrow) the E7 8857 v2, is available in an 8-socket version only with 12 cores running at 3.0 GHz in 30 megabytes of cache in 130 watt envelope for $3838 (versus the other 8-socket optimized variants that offer 3.2 ghz clockspeed, full cache and of course, more cores. The fact that specific optimized part is only available in 8-socket is definitely noteworthy; Intel has always offered 2 and 4-socket versions of previous offerings.

FullSlide66

Intel’s Curley told us that while there is a segment optimized offering in 8-node configuration, this by no means limits the options for HPC shops and OEMs. “If you wanted to try to build big a lot of memory capacity or bandwidth on a two-socket node you could use smaller E7 line products. OEMs will configure this in a number of ways. There are different feature sets across the line; the line is built for the greatest memory density per core, it has a lot of bandwidth per core, it’s built for even greater levels of resiliency to support mission-critical applications in ways that previous generations didn’t address to this degree.” In other words, as with everything in HPC–it all depends on where your priorities lie.

In this E7 world of multiple possibilities, there are a number of configurations that serve different needs, as highlighted below. As Intel demonstrates via the 120-core cluster in a box-themed slide below, if you have four 2-socket servers of the previous generation, you can do the same amount of work by jamming it into two four-socket servers, but run at around 2.5x faster (thanks to the QuickPath Interconnect, which is way faster than Ethernet).

Slide74The beauty of the model is that for HPC workloads in particular (keep in mind that the sweet spot for average job sizes in HPC hovers around the 128 core mark) it’s possible to speed up the work using the same number of processors and farm it out to larger, more memory-stuffed nodes that are designed to run faster.

To put this in some real-world performance context, consider the (somewhat wonky) chart below, which uses the baseline of the Ivy Bridge they rolled out last September. Intel wasn’t crossing out their own numbers there; rather, the crossed-out number represents the average performance boost for a broad range of similar workloads—in essence, an average figure across multiple applications in a domain. The higher number with the application name is a top performer, hitting the app high-water mark they reference on the top left.

In other words, using the life sciences example, while most life science applications they benchmarked came out at around 2x the performance, MILC hit 3x. Similarly, when it came to financial services, the average performance increase across a range of common applications was 2.4 while Black Scholes in particular topped out at 2.6x. Even without data on how many applications were benchmarked to come up with the average, you get the idea…

Slide73On another note, for those who are interested in bandwidth, Intel has had single device data correct, or SDDC, in the memory controllers used with its server processors since the 1990s. What it does, in essence anyway, is allow for a faulty DRAM memory chip to be taken out of the memory pool and isolated. You can heal around one bad chip and correct errors. With the Westmere E7s, given the large memory in the system, Intel added a new feature called Double Device Data Correct.

With this feature, Intel could correct errors after two chips failed on a memory module. With the new performance mode, Intel is allowing customers who want to speed up the memory buffer chips and therefore get more memory bandwidth out of the system to step back to single chip recovery mode. In the normal DDDC mode, which is called lockstep mode now, both the SMI2 memory buffers and the memory chips run at the same speed: 1600 MT/sec. With the new performance mode, the SMI2 memory buffers run at 2667 MT/sec, and the memory runs at half that speed. The net effect is that in performance mode, the system bandwidth is increased by 54 percent compared to lockstep mode. Some error correction capability is sacrificed for the sake of bandwidth.

slide40

All of this theoretical at this point, mind you–we can write the real story when some early users lend us their experiences and insights. As it stands, this story just broke and again, the real emphasis is on databases (the SAP HANA tale is certainly compelling–follow that at EnterpriseTech this week).

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

HPE Extreme Performance Solutions

Object Storage is the Ideal Storage Method for CME Companies

The communications, media, and entertainment (CME) sector is experiencing a massive paradigm shift driven by rising data volumes and the demand for high-performance data analytics. Read more…

Weekly Twitter Roundup (Feb. 16, 2017)

February 16, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Alexander Named Dep. Dir. of Brookhaven Computational Initiative

February 15, 2017

Francis Alexander, a physicist with extensive management and leadership experience in computational science research, has been named Deputy Director of the Computational Science Initiative at the U.S. Read more…

Here’s What a Neural Net Looks Like On the Inside

February 15, 2017

Ever wonder what the inside of a machine learning model looks like? Today Graphcore released fascinating images that show how the computational graph concept maps to a new graph processor and graph programming framework it’s creating. Read more…

By Alex Woodie

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

HPC Cloud Startup Launches ‘App Store’ for HPC Workflows

February 9, 2017

“Civilization advances by extending the number of important operations which we can perform without thinking about them,” Read more…

By Tiffany Trader

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This