Intel Etches HPC Niche with Xeon E7 V2

By Nicole Hemsoth

February 18, 2014

Intel has finally pulled the lid off their Westmere-followup processors with the new Xeon E7 v2 series, which while generally targeting enterprise big data and analytics workloads, offers far more for HPC than might meet the eye.

Despite the range of targeted application areas, the 22 nanometer process, memory capabilities, robust AVX instruction capabilities, and unique reliability features make this well suited for HPC. Intel has managed to slice a sizable piece of performance to create a 120-core “HPC cluster in a box” that while higher in price than the previous Ivy Bridges that rolled out last September, could be a suitable fit for a wide swath of technical computing workloads.

As Intel’s Joe Curley told us today, “The E7s offer a ton of density in a node and this is indeed a great HPC story–as well as a great big data and enterprise story. Any type of application where you need a lot of memory and reliability and you’re doing a long set of calculations, that’s where the E7 set of products is going to do really well for you.” You end up with 120 cores in a node, 12 terabytes of memory maximum, you can fit a lot of density and compute there and there are HPC and many other workloads that this will be ideal for.”

Before we dive into the specifics, it’s worth acknowledging that one of the most fascinating aspects of this more general E7 v2 announcement is how Intel was able to balance out a multitude of goals and targets for a wide range of potential workloads via a segmentation model. It would have been perfectly feasible for this same news to span across several versions of the same essential chip sporting variations in cache or clock speeds—but these are actually well-optimized for the workloads being targeted and can be broken down along multiple lines according to priorities (power draw, memory and cache requirements, clock speed, etc.). In other words, the marketing for the E7 v2 is that there’s almost guaranteed to be something for everyone, in all price ranges and across nearly all workloads.

For context, take a look below at the two comparison charts that compare the Westmere predecessor (the E7-4800) with against SPEC (at the top) and then according to LINPACK performance just underneath.

 slide70And for LINPACK

slide71

The AVX capabilities are another noteworthy feature in these new processors—a point to consider with the LINPACK slide above. The 256-bit AVX vector units in the Ivy Bridge core can do eight double-precision floating point calculations per clock cycle via two AVX units per core (4 per AVX unit). This is good news for HPC on this front since the Westmere didn’t have any AVX at all.

The thing to notice here is that if you look below at the figures with 15 cores operating on this level, you’re looking at 1.246 teraflops—which is right on par with the Xeon Phi. Theoretically, this means that for those who aren’t concerned with the price (and the difference is quite hefty) it’s possible to circumvent the Xeon Phi and the programming talent required to get code up to snuff entirely and stock a cluster with these parts instead. Whether or not shops will consider this is up in the air—especially since this comparison won’t be valid by next year if rumors are correct and a three-teraflop Phi chip actually emerges.

According to Curley, “The products complement each other. Each Xeon Phi coprocessor has greater peak FLOPS and memory bandwidth per device, but lower memory capacity. The Xeon E7 Family provides very large memory capacity per processor, and allows up to 8 processors per node.”

The products address different application spaces for the most part, but as part of a portfolio produce an outstanding economic return for application developers, said Curley. “The Intel Xeon E7 Family is optimized for computing with memory density per node, superior results when compared to RISC and mainframe alternatives, and server consolidation markets. Xeon Phi addresses highly parallel applications that can take maximum benefit of Xeon Phi’s performance per watt.”

But the key advantage between them remains that applications optimized for Xeon Phi use the same core, thread, and SIMD elements – meaning applications optimized for one can be moved to the other – a critical advantage for developers.

Take a look at the chart below, which shows the 20 ways you can slice the E7 v2 for 2, 4 and 8 socket variants across different workload types via the basic, standard and advanced configurations, all of which offer some notable tradeoffs (or none at all for the big spenders) in core counts, cache and clock speeds to fit a variety of both memory, compute and energy demands. The segment optimized for HPC (bottom right with my red arrow) the E7 8857 v2, is available in an 8-socket version only with 12 cores running at 3.0 GHz in 30 megabytes of cache in 130 watt envelope for $3838 (versus the other 8-socket optimized variants that offer 3.2 ghz clockspeed, full cache and of course, more cores. The fact that specific optimized part is only available in 8-socket is definitely noteworthy; Intel has always offered 2 and 4-socket versions of previous offerings.

FullSlide66

Intel’s Curley told us that while there is a segment optimized offering in 8-node configuration, this by no means limits the options for HPC shops and OEMs. “If you wanted to try to build big a lot of memory capacity or bandwidth on a two-socket node you could use smaller E7 line products. OEMs will configure this in a number of ways. There are different feature sets across the line; the line is built for the greatest memory density per core, it has a lot of bandwidth per core, it’s built for even greater levels of resiliency to support mission-critical applications in ways that previous generations didn’t address to this degree.” In other words, as with everything in HPC–it all depends on where your priorities lie.

In this E7 world of multiple possibilities, there are a number of configurations that serve different needs, as highlighted below. As Intel demonstrates via the 120-core cluster in a box-themed slide below, if you have four 2-socket servers of the previous generation, you can do the same amount of work by jamming it into two four-socket servers, but run at around 2.5x faster (thanks to the QuickPath Interconnect, which is way faster than Ethernet).

Slide74The beauty of the model is that for HPC workloads in particular (keep in mind that the sweet spot for average job sizes in HPC hovers around the 128 core mark) it’s possible to speed up the work using the same number of processors and farm it out to larger, more memory-stuffed nodes that are designed to run faster.

To put this in some real-world performance context, consider the (somewhat wonky) chart below, which uses the baseline of the Ivy Bridge they rolled out last September. Intel wasn’t crossing out their own numbers there; rather, the crossed-out number represents the average performance boost for a broad range of similar workloads—in essence, an average figure across multiple applications in a domain. The higher number with the application name is a top performer, hitting the app high-water mark they reference on the top left.

In other words, using the life sciences example, while most life science applications they benchmarked came out at around 2x the performance, MILC hit 3x. Similarly, when it came to financial services, the average performance increase across a range of common applications was 2.4 while Black Scholes in particular topped out at 2.6x. Even without data on how many applications were benchmarked to come up with the average, you get the idea…

Slide73On another note, for those who are interested in bandwidth, Intel has had single device data correct, or SDDC, in the memory controllers used with its server processors since the 1990s. What it does, in essence anyway, is allow for a faulty DRAM memory chip to be taken out of the memory pool and isolated. You can heal around one bad chip and correct errors. With the Westmere E7s, given the large memory in the system, Intel added a new feature called Double Device Data Correct.

With this feature, Intel could correct errors after two chips failed on a memory module. With the new performance mode, Intel is allowing customers who want to speed up the memory buffer chips and therefore get more memory bandwidth out of the system to step back to single chip recovery mode. In the normal DDDC mode, which is called lockstep mode now, both the SMI2 memory buffers and the memory chips run at the same speed: 1600 MT/sec. With the new performance mode, the SMI2 memory buffers run at 2667 MT/sec, and the memory runs at half that speed. The net effect is that in performance mode, the system bandwidth is increased by 54 percent compared to lockstep mode. Some error correction capability is sacrificed for the sake of bandwidth.

slide40

All of this theoretical at this point, mind you–we can write the real story when some early users lend us their experiences and insights. As it stands, this story just broke and again, the real emphasis is on databases (the SAP HANA tale is certainly compelling–follow that at EnterpriseTech this week).

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SC17 Student Cluster Competition Configurations: Fewer Nodes, Way More Accelerators

November 16, 2017

The final configurations for each of the SC17 “Donnybrook in Denver” Student Cluster Competition have been released. Fortunately, each team received their equipment shipments on time and undamaged, so the teams are r Read more…

By Dan Olds

Student Clusterers Demolish HPCG Record! Nanyang Sweeps Benchmarks

November 16, 2017

Nanyang pulled off the always difficult double-play at this year’s SC Student Cluster Competition. The plucky team from Singapore posted a world record LINPACK, thus taking the Highest LINPACK Award, but also managed t Read more…

By Dan Olds

Student Cluster LINPACK Record Shattered! More LINs Packed Than Ever before!

November 16, 2017

Nanyang Technological University, the pride of Singapore, utterly destroyed the Student Cluster Competition LINPACK record by posting a score of 51.77 TFlop/s at SC17 in Denver. The previous record, established by German Read more…

By Dan Olds

HPE Extreme Performance Solutions

Harness Scalable Petabyte Storage with HPE Apollo 4510 and HPE StoreEver

As a growing number of connected devices challenges IT departments to rapidly collect, manage, and store troves of data, organizations must adopt a new generation of IT to help them operate quickly and intelligently. Read more…

Hyperion Market Update: ‘Decent’ Growth Led by HPE; AI Transparency a Risk Issue

November 15, 2017

The HPC market update from Hyperion Research (formerly IDC) at the annual SC conference is a business and social “must,” and this year’s presentation at SC17 played to a SRO crowd at a downtown Denver hotel. This w Read more…

By Doug Black

SC17 Student Cluster Competition Configurations: Fewer Nodes, Way More Accelerators

November 16, 2017

The final configurations for each of the SC17 “Donnybrook in Denver” Student Cluster Competition have been released. Fortunately, each team received their e Read more…

By Dan Olds

Student Clusterers Demolish HPCG Record! Nanyang Sweeps Benchmarks

November 16, 2017

Nanyang pulled off the always difficult double-play at this year’s SC Student Cluster Competition. The plucky team from Singapore posted a world record LINPAC Read more…

By Dan Olds

Student Cluster LINPACK Record Shattered! More LINs Packed Than Ever before!

November 16, 2017

Nanyang Technological University, the pride of Singapore, utterly destroyed the Student Cluster Competition LINPACK record by posting a score of 51.77 TFlop/s a Read more…

By Dan Olds

Hyperion Market Update: ‘Decent’ Growth Led by HPE; AI Transparency a Risk Issue

November 15, 2017

The HPC market update from Hyperion Research (formerly IDC) at the annual SC conference is a business and social “must,” and this year’s presentation at S Read more…

By Doug Black

The Betting Window is Closed: Final Student Cluster Competition Betting Odds are in!

November 15, 2017

The window has closed and the bettors are clutching their tickets, anxiously awaiting the results of the SC17 Student Cluster Competition. We’ve seen big chan Read more…

By Dan Olds

2017 Student Cluster Competition Benchmarks, Workloads, and Pre-Planned Disasters

November 15, 2017

The students competing in the 2017 Student Cluster Competition in Denver are facing a grueling 48 hour marathon of HPC benchmarks and real scientific applicatio Read more…

By Dan Olds

Nvidia Focuses Its Cloud Containers on HPC Applications

November 14, 2017

Having migrated its top-of-the-line datacenter GPU to the largest cloud vendors, Nvidia is touting its Volta architecture for a range of scientific computing ta Read more…

By George Leopold

HPE Launches ARM-based Apollo System for HPC, AI

November 14, 2017

HPE doubled down on its memory-driven computing vision while expanding its processor portfolio with the announcement yesterday of the company’s first ARM-base Read more…

By Doug Black

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This