The HPC to Enterprise Infrastructure Leap

By Nicole Hemsoth

February 24, 2014

As more companies feel the burdens of growing data demands in terms of volume and complexity—not to mention the need to derive results on such data quickly and efficiently—the chasm between what was once considered mainstream enterprise computing and “traditional” high performance computing is  is narrowing.

As we’ve addressed in other parts of this special series on lessons that HPC can carry into a growing array of enterprise application areas, including those that have a range of defined “big data” problems, this merging of HPC and commercial computing has been underway with increasing veracity over the last few years in particular—directly in line with momentum around the many data movement, ingestion and processing, memory, efficiency and other challenges enterprise users face.

While HPC has always had a foothold in key commercial segments (financial services, oil and gas, government, etc.) the technologies that were once reserved for these large-scale commercial areas are filtering down to a wider base of existing enterprise entities. It’s not uncommon lately (in the wake of the hubbub around big data) to hear about insurance companies, web retailers, content and media companies and others taking notice of HPC technologies in new ways.  Bill Mannel, General Manager of Compute Servers at SGI echoed this following a conversation about this HPC to enterprise leap, noting, “Key lessons that commercial and enterprise datacenters can take away from HPC is that infrastructure matters based upon your application, your data, and the quality of service expectations of customers.”

While many won’t disagree with that point, for those with complex applications, infrastructure has to matter in different ways than it used to. As Cray’s VP of Storage and Data Management, Barry Bolding told us, one of the most important lessons for the commercial segments is productive scalability. “The commercial/enterprise space understands productive virtualization, which is a type of scaling that improves utilization of resources. The area of productive scaling that HPC brings to the table is efficient, productive scalability for complex systems.  Scaling to fit an HPC solution in the coming years will require efficient parallel computing (both HW and SW), efficient parallel storage (to ensure no data access bottlenecks) and scalable analytics.

Bolding says the enterprise is seeing more and more applications needs that fit this model of parallel compute, storage and analytics.  The energy sector is using new, complex algorithms to do oil and gas exploration and productive scalability is key to meeting their needs.  In this example parallel, scalable storage and compute are the core to solving the problems efficiently.

Another key lesson that HPC can bring to bear is adaptive technologies, he says, noting that “for maximum efficiency and TCO it is critical to match the application need to the appropriate underlying technology. This is contrary to the cloud model where little effort is made to match the underlying technology to the application.”

When asked about the infrastructure leap from HPC to enterprise, Paul Dlugosch of Micron explained that “It is the HPC industry that first meets the most critical and difficult problems encountered in scientific and technical computing and it is true that innovations in the HPC industry often trickle down into mainstream use in commercial/enterprise datacenters.” In some cases, he says, the innovations can migrate all the way down to the client or consumer space.” In short, although the HPC industry operates at the top of this hierarchy of compute capability, there are “lessons learned in the HPC industry that have practical application throughout the entire spectrum of compute capability.”

While performance remains an important metric, Dlugosch says a myopic focus on performance can lead towards the top of a pyramid where the performance crown may be acquired but the overall market for the technology developed might becomes proportionately smaller. “When performance is the only objective, important opportunities may be missed. A good example would be the disruption imparted on high performance microprocessor vendors by the emerging need for lower power processors where less compute performance was an acceptable trade off. The lesson here, of course, is that focus on high performance may miss very important innovations that are not based on processing performance.”

Performance does indeed drive all aspects of the computing industry, but a sole focus on compute performance can leave a business vulnerable, argues Dlugosch. While the HPC industry can better afford a concentrated focus on compute performance, this does not extend to other segments of the computing industry where performance is only one of several metrics that will determine overall success.

One other area where HPC and enterprise users can connect is in the realm of risk adversity, says Dlugosch. As he explained in a detailed interview:

The old adage that ‘nobody ever got fired for buying IBM’ reflects this point quite well.  Of course, IBM in this case is a proxy for any well established, mature and stable technology provider.  While it may be true that nobody gets fired for buying tried and true technology, entire businesses can fail because they did not recognize important technology inflection points that were coming their way.  There are many popular examples that include Wang Computer (client based word processing), Digital Equipment (personal computer) among others.

The HPC industry is quite used to operating in the domain where the opportunity for failure is high.  It is the nature of pushing the boundaries of computing capability.  So what lesson might the commercial/enterprise data centers learn for the HPC community in this respect?  You must be willing to explore technologies outside the comfort zone defined by incremental or evolutionary improvements.  Customers have a long history of driving suppliers and service providers along predictable paths of incremental improvements.  

While this may be safe and meet the needs of the immediate business, following this safe path may lead to a missed opportunities afforded by new and emerging technologies.  In particular, low end disruptions enabled by new technologies can be detrimental to businesses that are caught off guard.  While the HPC industry is naturally focused on the high end of the computing spectrum and have a higher tolerance for risk, commercial/enterprise data centers must also take ownership for innovation and not assume it will come from their technology providers or through customer demands.

The problem of choosing the proper system for a given workload is not just an HPC issue. However, according to some, including Bill Dunmire, Senior Director of Product Marketing at SGI, “High performance computing is generally unchartered territory within enterprise data centers. It is here that “clusters” are utilized for HA (server failover) or server virtualization (e.g. V-motion) as opposed to parallel computing. Shared-memory systems are completely unknown.” He notes that in such cases, “IT will be required to develop expertise in HPC and will need to avoid inefficiencies in performance, scalability, and cost as LOB demands grow.”

Add to that general view, the more complex matters of system design and architecture which, as Jack Dongarra of Oak Ridge National Lab and the University of Tennessee told us, leads traditional HPC and enterprise users of advanced computing to two key questions—first, how can/should the internal architecture of HPC systems be changed to make them more suitable for data driven commercial applications? Second, how can/should external storage systems and their interfaces be adapted in order to efficiently orchestrate, as part of the overall workflow, the movement of data into and out of these systems? At this point in time, however, these questions seem to only generate more questions rather than any widely accepted (or even plausible) answers.

“Issues of interoperability are closely related with fundamental questions about the architecture and codesign of hardware and software infrastructure,” Dongarra explained. “Unfortunately, these same factors tend to make them relatively intractable. For interoperability has to mean more than just “everyone adopts the same standard or the same interface.” Aside from cases where de facto or de jure monopoly power is exercised, a viable approach to interoperability for infrastructure means designing protocols and interfaces that people voluntarily adopt because they can use them to achieve their functional goals while also achieving deployment scalability and sustainability over time.”

Echoing Jack Dongarra’s questions and potential roadblocks to widespread changes in enterprise computing, HPC researcher, Dr. Kirk Cameron of Virginia Tech explained that “The problems of scalability, speed, and complexity manifest acutely at the extreme scales that challenge the HPC community daily. Thus, the incessant need in HPC to maintain competitiveness by pushing simulation fidelity and scale to solve problems of grand importance to a myriad of sciences ensures the rapid adoption of cutting edge technologies.” He points to certain technologies, such as the Cell Broadband Engine, are vetted and then only briefly embraced by commercial enterprises. Other technologies, such as general purpose graphics processing units (GPGPUs), are vetted and ultimately adapted and integrated into the mainstream as evidenced by Intel and AMD embracing systems-on-chip technologies with GPGPUs built in. Much like high-performance car racing drives advances in automobile efficiency, HPC pushes the limits of computing so that commerical/enterprise datacenters can adopt best-in-class techniques and technologies to reduce the burden on their in-house R&D efforts.”

The central question is which technologies will enterprises seek and adopt that filter from HPC, especially with some of the potential barriers Dongarra and others have mentioned. To arrive at a more thorough answer to that question, we’ll be exploring a few aspects of these topics in coming special sections in the HPC to enterprise series around accelerators, HPC clouds and overall workflow/software issues later this week.

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Google Cloud Makes Good on Promise to Add Nvidia P100 GPUs

September 21, 2017

Google has taken down the notice on its cloud platform website that says Nvidia Tesla P100s are “coming soon.” That's because the search giant has announced the beta launch of the high-end P100 Nvidia Tesla GPUs on t Read more…

By George Leopold

Cray Wins $48M Supercomputer Contract from KISTI

September 21, 2017

It was a good day for Cray which won a $48 million contract from the Korea Institute of Science and Technology Information (KISTI) for a 128-rack CS500 cluster supercomputer. The new system, equipped with Intel Xeon Scal Read more…

By John Russell

Adolfy Hoisie to Lead Brookhaven’s Computing for National Security Effort

September 21, 2017

Brookhaven National Laboratory announced today that Adolfy Hoisie will chair its newly formed Computing for National Security department, which is part of Brookhaven’s new Computational Science Initiative (CSI). Read more…

By John Russell

HPE Extreme Performance Solutions

HPE Prepares Customers for Success with the HPC Software Portfolio

High performance computing (HPC) software is key to harnessing the full power of HPC environments. Development and management tools enable IT departments to streamline installation and maintenance of their systems as well as create, optimize, and run their HPC applications. Read more…

PNNL’s Center for Advanced Tech Evaluation Seeks Wider HPC Community Ties

September 21, 2017

Two years ago the Department of Energy established the Center for Advanced Technology Evaluation (CENATE) at Pacific Northwest National Laboratory (PNNL). CENATE’s ambitious mission was to be a proving ground for near- Read more…

By John Russell

Stanford University and UberCloud Achieve Breakthrough in Living Heart Simulations

September 21, 2017

Cardiac arrhythmia can be an undesirable and potentially lethal side effect of drugs. During this condition, the electrical activity of the heart turns chaotic, Read more…

By Wolfgang Gentzsch, UberCloud, and Francisco Sahli, Stanford University

PNNL’s Center for Advanced Tech Evaluation Seeks Wider HPC Community Ties

September 21, 2017

Two years ago the Department of Energy established the Center for Advanced Technology Evaluation (CENATE) at Pacific Northwest National Laboratory (PNNL). CENAT Read more…

By John Russell

Exascale Computing Project Names Doug Kothe as Director

September 20, 2017

The Department of Energy’s Exascale Computing Project (ECP) has named Doug Kothe as its new director effective October 1. He replaces Paul Messina, who is stepping down after two years to return to Argonne National Laboratory. Kothe is a 32-year veteran of DOE’s National Laboratory System. Read more…

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blu Read more…

By Merle Giles

Kathy Yelick Charts the Promise and Progress of Exascale Science

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakthrough Science at the Exascale” at the ACM Europe Conference in Barcelona. In conjunction with her presentation, Yelick agreed to a short Q&A discussion with HPCwire. Read more…

By Tiffany Trader

DARPA Pledges Another $300 Million for Post-Moore’s Readiness

September 14, 2017

The Defense Advanced Research Projects Agency (DARPA) launched a giant funding effort to ensure the United States can sustain the pace of electronic innovation vital to both a flourishing economy and a secure military. Under the banner of the Electronics Resurgence Initiative (ERI), some $500-$800 million will be invested in post-Moore’s Law technologies. Read more…

By Tiffany Trader

IBM Breaks Ground for Complex Quantum Chemistry

September 14, 2017

IBM has reported the use of a novel algorithm to simulate BeH2 (beryllium-hydride) on a quantum computer. This is the largest molecule so far simulated on a quantum computer. The technique, which used six qubits of a seven-qubit system, is an important step forward and may suggest an approach to simulating ever larger molecules. Read more…

By John Russell

Cubes, Culture, and a New Challenge: Trish Damkroger Talks about Life at Intel—and Why HPC Matters More Than Ever

September 13, 2017

Trish Damkroger wasn’t looking to change jobs when she attended SC15 in Austin, Texas. Capping a 15-year career within Department of Energy (DOE) laboratories, she was acting Associate Director for Computation at Lawrence Livermore National Laboratory (LLNL). Her mission was to equip the lab’s scientists and research partners with resources that would advance their cutting-edge work... Read more…

By Jan Rowell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

Leading Solution Providers

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

GlobalFoundries: 7nm Chips Coming in 2018, EUV in 2019

June 13, 2017

GlobalFoundries has formally announced that its 7nm technology is ready for customer engagement with product tape outs expected for the first half of 2018. The Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This