The HPC to Enterprise Infrastructure Leap

By Nicole Hemsoth

February 24, 2014

As more companies feel the burdens of growing data demands in terms of volume and complexity—not to mention the need to derive results on such data quickly and efficiently—the chasm between what was once considered mainstream enterprise computing and “traditional” high performance computing is  is narrowing.

As we’ve addressed in other parts of this special series on lessons that HPC can carry into a growing array of enterprise application areas, including those that have a range of defined “big data” problems, this merging of HPC and commercial computing has been underway with increasing veracity over the last few years in particular—directly in line with momentum around the many data movement, ingestion and processing, memory, efficiency and other challenges enterprise users face.

While HPC has always had a foothold in key commercial segments (financial services, oil and gas, government, etc.) the technologies that were once reserved for these large-scale commercial areas are filtering down to a wider base of existing enterprise entities. It’s not uncommon lately (in the wake of the hubbub around big data) to hear about insurance companies, web retailers, content and media companies and others taking notice of HPC technologies in new ways.  Bill Mannel, General Manager of Compute Servers at SGI echoed this following a conversation about this HPC to enterprise leap, noting, “Key lessons that commercial and enterprise datacenters can take away from HPC is that infrastructure matters based upon your application, your data, and the quality of service expectations of customers.”

While many won’t disagree with that point, for those with complex applications, infrastructure has to matter in different ways than it used to. As Cray’s VP of Storage and Data Management, Barry Bolding told us, one of the most important lessons for the commercial segments is productive scalability. “The commercial/enterprise space understands productive virtualization, which is a type of scaling that improves utilization of resources. The area of productive scaling that HPC brings to the table is efficient, productive scalability for complex systems.  Scaling to fit an HPC solution in the coming years will require efficient parallel computing (both HW and SW), efficient parallel storage (to ensure no data access bottlenecks) and scalable analytics.

Bolding says the enterprise is seeing more and more applications needs that fit this model of parallel compute, storage and analytics.  The energy sector is using new, complex algorithms to do oil and gas exploration and productive scalability is key to meeting their needs.  In this example parallel, scalable storage and compute are the core to solving the problems efficiently.

Another key lesson that HPC can bring to bear is adaptive technologies, he says, noting that “for maximum efficiency and TCO it is critical to match the application need to the appropriate underlying technology. This is contrary to the cloud model where little effort is made to match the underlying technology to the application.”

When asked about the infrastructure leap from HPC to enterprise, Paul Dlugosch of Micron explained that “It is the HPC industry that first meets the most critical and difficult problems encountered in scientific and technical computing and it is true that innovations in the HPC industry often trickle down into mainstream use in commercial/enterprise datacenters.” In some cases, he says, the innovations can migrate all the way down to the client or consumer space.” In short, although the HPC industry operates at the top of this hierarchy of compute capability, there are “lessons learned in the HPC industry that have practical application throughout the entire spectrum of compute capability.”

While performance remains an important metric, Dlugosch says a myopic focus on performance can lead towards the top of a pyramid where the performance crown may be acquired but the overall market for the technology developed might becomes proportionately smaller. “When performance is the only objective, important opportunities may be missed. A good example would be the disruption imparted on high performance microprocessor vendors by the emerging need for lower power processors where less compute performance was an acceptable trade off. The lesson here, of course, is that focus on high performance may miss very important innovations that are not based on processing performance.”

Performance does indeed drive all aspects of the computing industry, but a sole focus on compute performance can leave a business vulnerable, argues Dlugosch. While the HPC industry can better afford a concentrated focus on compute performance, this does not extend to other segments of the computing industry where performance is only one of several metrics that will determine overall success.

One other area where HPC and enterprise users can connect is in the realm of risk adversity, says Dlugosch. As he explained in a detailed interview:

The old adage that ‘nobody ever got fired for buying IBM’ reflects this point quite well.  Of course, IBM in this case is a proxy for any well established, mature and stable technology provider.  While it may be true that nobody gets fired for buying tried and true technology, entire businesses can fail because they did not recognize important technology inflection points that were coming their way.  There are many popular examples that include Wang Computer (client based word processing), Digital Equipment (personal computer) among others.

The HPC industry is quite used to operating in the domain where the opportunity for failure is high.  It is the nature of pushing the boundaries of computing capability.  So what lesson might the commercial/enterprise data centers learn for the HPC community in this respect?  You must be willing to explore technologies outside the comfort zone defined by incremental or evolutionary improvements.  Customers have a long history of driving suppliers and service providers along predictable paths of incremental improvements.  

While this may be safe and meet the needs of the immediate business, following this safe path may lead to a missed opportunities afforded by new and emerging technologies.  In particular, low end disruptions enabled by new technologies can be detrimental to businesses that are caught off guard.  While the HPC industry is naturally focused on the high end of the computing spectrum and have a higher tolerance for risk, commercial/enterprise data centers must also take ownership for innovation and not assume it will come from their technology providers or through customer demands.

The problem of choosing the proper system for a given workload is not just an HPC issue. However, according to some, including Bill Dunmire, Senior Director of Product Marketing at SGI, “High performance computing is generally unchartered territory within enterprise data centers. It is here that “clusters” are utilized for HA (server failover) or server virtualization (e.g. V-motion) as opposed to parallel computing. Shared-memory systems are completely unknown.” He notes that in such cases, “IT will be required to develop expertise in HPC and will need to avoid inefficiencies in performance, scalability, and cost as LOB demands grow.”

Add to that general view, the more complex matters of system design and architecture which, as Jack Dongarra of Oak Ridge National Lab and the University of Tennessee told us, leads traditional HPC and enterprise users of advanced computing to two key questions—first, how can/should the internal architecture of HPC systems be changed to make them more suitable for data driven commercial applications? Second, how can/should external storage systems and their interfaces be adapted in order to efficiently orchestrate, as part of the overall workflow, the movement of data into and out of these systems? At this point in time, however, these questions seem to only generate more questions rather than any widely accepted (or even plausible) answers.

“Issues of interoperability are closely related with fundamental questions about the architecture and codesign of hardware and software infrastructure,” Dongarra explained. “Unfortunately, these same factors tend to make them relatively intractable. For interoperability has to mean more than just “everyone adopts the same standard or the same interface.” Aside from cases where de facto or de jure monopoly power is exercised, a viable approach to interoperability for infrastructure means designing protocols and interfaces that people voluntarily adopt because they can use them to achieve their functional goals while also achieving deployment scalability and sustainability over time.”

Echoing Jack Dongarra’s questions and potential roadblocks to widespread changes in enterprise computing, HPC researcher, Dr. Kirk Cameron of Virginia Tech explained that “The problems of scalability, speed, and complexity manifest acutely at the extreme scales that challenge the HPC community daily. Thus, the incessant need in HPC to maintain competitiveness by pushing simulation fidelity and scale to solve problems of grand importance to a myriad of sciences ensures the rapid adoption of cutting edge technologies.” He points to certain technologies, such as the Cell Broadband Engine, are vetted and then only briefly embraced by commercial enterprises. Other technologies, such as general purpose graphics processing units (GPGPUs), are vetted and ultimately adapted and integrated into the mainstream as evidenced by Intel and AMD embracing systems-on-chip technologies with GPGPUs built in. Much like high-performance car racing drives advances in automobile efficiency, HPC pushes the limits of computing so that commerical/enterprise datacenters can adopt best-in-class techniques and technologies to reduce the burden on their in-house R&D efforts.”

The central question is which technologies will enterprises seek and adopt that filter from HPC, especially with some of the potential barriers Dongarra and others have mentioned. To arrive at a more thorough answer to that question, we’ll be exploring a few aspects of these topics in coming special sections in the HPC to enterprise series around accelerators, HPC clouds and overall workflow/software issues later this week.

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Battle Brews over Trump Intentions for Funding Science

February 27, 2017

The battle over science funding – how much and for what kinds of science – Read more…

By John Russell

Google Gets First Dibs on New Skylake Chips

February 27, 2017

As part of an ongoing effort to differentiate its public cloud services, Google made good this week on its intention to bring custom Xeon Skylake chips from Intel Corp. Read more…

By George Leopold

Thomas Sterling on CREST and Academia’s Role in HPC Research

February 27, 2017

The US advances in high performance computing over many decades have been a product of the combined engagement of research centers in industry, government labs, and academia. Read more…

By Thomas Sterling, Indiana University

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

HPE Extreme Performance Solutions

Manufacturers Reaping the Benefits of Remote Visualization

Today’s manufacturers are operating in an ever-changing atmosphere, and finding new ways to boost productivity has never been more vital.

This is why manufacturers are ramping up their investments in high performance computing (HPC), a trend which has helped give rise to the “connected factory” and Industrial Internet of Things (IIoT) concepts that are proliferating throughout the industry today. Read more…

Weekly Twitter Roundup (Feb. 23, 2017)

February 23, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

HPC Financial Update (Feb. 2017)

February 22, 2017

In this recurring feature, we’ll provide you with financial highlights from companies in the HPC industry. Check back in regularly for an updated list with the most pertinent fiscal information. Read more…

By Thomas Ayres

Rethinking HPC Platforms for ‘Second Gen’ Applications

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. Read more…

By John Russell

Thomas Sterling on CREST and Academia’s Role in HPC Research

February 27, 2017

The US advances in high performance computing over many decades have been a product of the combined engagement of research centers in industry, government labs, and academia. Read more…

By Thomas Sterling, Indiana University

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Leading Solution Providers

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

  • arrow
  • Click Here for More Headlines
  • arrow
Share This