How the iForge Cluster is Manufacturing Results for Big Industry

By Nicole Hemsoth

February 26, 2014

When one thinks of major manufacturing companies, including Boeing, Proctor and Gamble, John Deere, Caterpillar, Dow, GE and others, from a systems and software perspective, there is little doubt that the competitive edge lies in high performance computing. But for many of these companies, it’s not simply a matter of plugging engineering codes into high core-count, accelerated supercomputers to magically realize better results.

Finite element analysis, computational fluid dynamics and homegrown codes at the largest manufacturing companies have their own unique system needs—but tend to run inside daily workflows where experimentation with new architectures and approaches are pushed down the chain due to competing demands from across the organization. According to Merle Giles, who leads the private sector program and economic development initiatives at the National Center for Supercomputing Applications (NCSA), most of the common engineering applications tend to hum nicely at around 1000 cores. They don’t’ tend to require acceleration but do need major memory to handle decomposition and other critical elements.

So while Giles and his team at NCSA have access to Blue Waters, core counts and scientific application performance are secondary. For the users he’s targeting–those with commercial and mission-critical home-cooked engineering codes–such a massive resource might not have the specific appeal of another far smaller (but far more targeted) option: A pared down, but finely tuned cluster specifically built to address the experimental needs of the “power users” at leading manufacturing companies. Giles’ team has such a hardware resource…and they’re also able to collect the varied expertise across both NCSA and the University of Illinois to bring world class support to bear as well.

To put this difference between system needs in context, consider that memory-tied engineering codes on Blue Waters with its 64 GB of RAM on a single node might do reasonably well, but take a much smaller cluster, in this case, the iForge system that Giles and his team operate in the Digital Manufacturing Lab at NCSA, and these codes can sing through decomposition on 256 GB instead.

The iForge cluster has been benchmarked for common CFD and FEA applications against the mighty Blue Waters for confirmation—which has further bolstered Giles and teams’ mission to keep pushing the edges of what’s useful for the manufacturing companies they’re serving with their private cluster that’s reserved for the experimental “power users” from the big companies listed above. “We want to be complementary to Blue Waters, not redundant,” Giles explained.

If you haven’t heard of iForge, it’s because although it’s been around for the last three years (and churning a profit for Giles to pump directly into the program with more–and more interesting—cores) it’s not part of the more publicized publicly funded efforts one might expect out of a university or national lab/supercomputer center setting. You also haven’t seen it from any LINPACK or other publicized benchmarking runs. Giles says this is because it’s optimized for these users to test and deploy their mission-critical code using some of the newest hardware. For instance, iForge was one of the early recipients of Sandy Bridge when it was available and already sports one of the just-released new Intel Xeon E7 4890 15-core-based nodes–for now.

The goal is simple: let the power users from the high end of digital manufacturing hop on board to take new architectures for a spin, optimize their codes and evaluate them against their existing infrastructure to better understand upgrade/rip and replace ROIs without burdening their own in-house clusters. These users can take valuable lessons about how their code scales and operates, make choices and in turn, Giles and team can turn over valuable feedback to system vendors. Also, they can use these cores for production runs, which the team charges for and that keep the center profitable and support the endless cycle of refreshes and system expansion. And speaking of the system…

iforge_250We were able to receive a number of deep details about the evolution of iForge from Evan Burness, the Program Manager for the private sector and economic development program at NCSA. Evan narrated the journey of cutting-edge hardware for us, including details about their Intel (and for a while, Opteron) environment, which was slung together by Dell with DDN storage and QDR Infinibad. As Burness described:

“We started iForge in Q3 2011 with “Intel’s Westmere” (116 EP nodes, 3 EX nodes) and AMD’s “Magny Cours” (2 nodes) architectures. That system had 1,584 cores total. In 2012 we upgraded to Intel’s “Sandy Bridge” (128 EP nodes) architecture when it was released to market (Q3 2012), and at the same time  increased our AMD node count from 2 to 18, and upgraded the processors to “Interlagos” (Just like the CPU’s on Blue Waters). Through the upgrade, we increased the node count from 121 to 146, and the core count to 2,624.” As a side point, he’s counting 4 Opteron processors in a node as accounting for 32 cores, rather than the 64 AMD might cite since the the “16 core” Opteron chips based on Interlagos and Abu Dhabi only have 8 floating point units, which is what’s really important for their work.

These constant upgrades were part of the master plan for the project—and will continue to be so since the goal is to continue offering new architectures for manufacturing users to test and explore.

Burness says they intended to upgrade again in mid-2013 (this time through Intel’s early access program), but vendor delays pushed that back to January of 2014. At that time, they upgraded to Intel’s “Ivy Bridge” (144 EP nodes) line, and AMD’s “Abu Dhabi’ Line. The Ivy Bridge nodes indeed feature the 10-core variants (Xeon E5 2680 v2), with 96 of the nodes featuring 64 GB of RAM (for CFD) workloads and 48 featuring 256 GB of RAM (for finite element analysis) workloads.

“We also added one (1) Ivy Bridge-EX system directly from Intel, who saw iForge as a particularly good platform at which to throw this new technology given how industry brings real-world development and production problems to this system.” Burness explained. These only were released from Intel in December and January. iForge is now one of the precious few that we can get any details on that features 4 x 15-core Xeon E7 4890 CPUs for a total of 60 cores and 120 threads. Burness and team have also augmented the server with an extra 1.5 terabytes of memory and multiple Infiniband connections.

In addition, he said, they upgraded their network insofar as PCIe gen 3.0 on the Ivy Bridge nodes increased the usable bandwidth of our QDR Infiniband fabric from 25.6 Gb/sec to 32.0 Gb/sec, “all while maintaining the lowest possible latency (even lower than FDR).” Burness says that coupled with all of this, they’re also adding 8 instances of Windows and GUI’d Red Hat Linux in order to provide the “desktop computing” experience for users that need to do so much inside their engineering workflows to support batch processing HPC. “Here, think of the need to run CAD and CAM workloads at one’s computer and then send the files to an HPC cluster. Doing so becomes inherently tougher as the simulated models become more complex and the data sizes grow larger. Having one integrated environment for the entire workflow is a big productivity booster for our industry partners.”

Burness says that, “Throughout all 3 years of operation, iForge has been supported by a GPFS filesystem from IBM running on a DDN SFA-10000 storage system. We pack our storage servers with 192 GB of RAM/server in order to maximize the amount of caching/buffering to RAM, which can really improve performance for I/O intensive applications.” He noted that “A big part of the design focus is on producing a system every year that is as fast or faster than all but a very elite and small number of companies would be able to build and support for themselves (exceptions would General Electric, BP etc.).”

Giles put all of this in real-world terms by referencing a use case with one of the large manufacturers when they first received the early Sandy Bridges. He said that at time, many of their partners weren’t sure how to step up to Sandy Bridge, despite its promise (including AVX capability) for engineering applications. By allowing them to experiment and hit full production runs on the system, Giles says they were able to completely change their workflows, validate the usefulness of the architecture, and push their normal 128-core workflow into 256 core territory. This isn’t something they would have been able to do on their home machines, which are “artificially dumbed down” to support a broader, more policy-based approach to handling daily work.

This work on iForge will be all be overseen by by UI Labs, which is a separate nonprofit organization based out of the university, where it can better leverage academic resources and those found at NCSA as well.  This ties in with the announcement this week of a $70 million “grant” (which Giles defines more of a matching funding arrangement similar to NDEMC) for digital manufacturing. This Department of Defense-led project will drive additional matched funds on the order of around $250 million from a number of manufacturing companies and other institutions.

As Burness concluded, “The government funded model of a system that runs in the same configuration for 3-5 years is not good enough for our power users from industry, as they have an insatiable appetite for speed and performance. In addition, we do a lot in design process to ensure a much higher level of uptime than many other HPC systems. A big part of that is our use of the GPFS filesystem. Though it must be licensed and is not faster than Lustre, it is WAYYY more reliable and easier to administer. It’s a huge part of the reason we’re able to achieve 99% uptime on iForge, which is a reliability level that industry demands.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Geospatial Data Research Leverages GPUs

August 17, 2017

MapD Technologies, the GPU-accelerated database specialist, said it is working with university researchers on leveraging graphics processors to advance geospatial analytics. The San Francisco-based company is collabor Read more…

By George Leopold

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Centers (IPCCs) has resulted in a new Big Data Center (BDC) that Read more…

By Linda Barney

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last week the cloud giant released deeplearn.js as part of that in Read more…

By John Russell

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Spoiler Alert: Glimpse Next Week’s Solar Eclipse Via Simulation from TACC, SDSC, and NASA

August 17, 2017

Can’t wait to see next week’s solar eclipse? You can at least catch glimpses of what scientists expect it will look like. A team from Predictive Science Inc. (PSI), based in San Diego, working with Stampede2 at the Read more…

By John Russell

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Leading Solution Providers

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This