How the iForge Cluster is Manufacturing Results for Big Industry

By Nicole Hemsoth

February 26, 2014

When one thinks of major manufacturing companies, including Boeing, Proctor and Gamble, John Deere, Caterpillar, Dow, GE and others, from a systems and software perspective, there is little doubt that the competitive edge lies in high performance computing. But for many of these companies, it’s not simply a matter of plugging engineering codes into high core-count, accelerated supercomputers to magically realize better results.

Finite element analysis, computational fluid dynamics and homegrown codes at the largest manufacturing companies have their own unique system needs—but tend to run inside daily workflows where experimentation with new architectures and approaches are pushed down the chain due to competing demands from across the organization. According to Merle Giles, who leads the private sector program and economic development initiatives at the National Center for Supercomputing Applications (NCSA), most of the common engineering applications tend to hum nicely at around 1000 cores. They don’t’ tend to require acceleration but do need major memory to handle decomposition and other critical elements.

So while Giles and his team at NCSA have access to Blue Waters, core counts and scientific application performance are secondary. For the users he’s targeting–those with commercial and mission-critical home-cooked engineering codes–such a massive resource might not have the specific appeal of another far smaller (but far more targeted) option: A pared down, but finely tuned cluster specifically built to address the experimental needs of the “power users” at leading manufacturing companies. Giles’ team has such a hardware resource…and they’re also able to collect the varied expertise across both NCSA and the University of Illinois to bring world class support to bear as well.

To put this difference between system needs in context, consider that memory-tied engineering codes on Blue Waters with its 64 GB of RAM on a single node might do reasonably well, but take a much smaller cluster, in this case, the iForge system that Giles and his team operate in the Digital Manufacturing Lab at NCSA, and these codes can sing through decomposition on 256 GB instead.

The iForge cluster has been benchmarked for common CFD and FEA applications against the mighty Blue Waters for confirmation—which has further bolstered Giles and teams’ mission to keep pushing the edges of what’s useful for the manufacturing companies they’re serving with their private cluster that’s reserved for the experimental “power users” from the big companies listed above. “We want to be complementary to Blue Waters, not redundant,” Giles explained.

If you haven’t heard of iForge, it’s because although it’s been around for the last three years (and churning a profit for Giles to pump directly into the program with more–and more interesting—cores) it’s not part of the more publicized publicly funded efforts one might expect out of a university or national lab/supercomputer center setting. You also haven’t seen it from any LINPACK or other publicized benchmarking runs. Giles says this is because it’s optimized for these users to test and deploy their mission-critical code using some of the newest hardware. For instance, iForge was one of the early recipients of Sandy Bridge when it was available and already sports one of the just-released new Intel Xeon E7 4890 15-core-based nodes–for now.

The goal is simple: let the power users from the high end of digital manufacturing hop on board to take new architectures for a spin, optimize their codes and evaluate them against their existing infrastructure to better understand upgrade/rip and replace ROIs without burdening their own in-house clusters. These users can take valuable lessons about how their code scales and operates, make choices and in turn, Giles and team can turn over valuable feedback to system vendors. Also, they can use these cores for production runs, which the team charges for and that keep the center profitable and support the endless cycle of refreshes and system expansion. And speaking of the system…

iforge_250We were able to receive a number of deep details about the evolution of iForge from Evan Burness, the Program Manager for the private sector and economic development program at NCSA. Evan narrated the journey of cutting-edge hardware for us, including details about their Intel (and for a while, Opteron) environment, which was slung together by Dell with DDN storage and QDR Infinibad. As Burness described:

“We started iForge in Q3 2011 with “Intel’s Westmere” (116 EP nodes, 3 EX nodes) and AMD’s “Magny Cours” (2 nodes) architectures. That system had 1,584 cores total. In 2012 we upgraded to Intel’s “Sandy Bridge” (128 EP nodes) architecture when it was released to market (Q3 2012), and at the same time  increased our AMD node count from 2 to 18, and upgraded the processors to “Interlagos” (Just like the CPU’s on Blue Waters). Through the upgrade, we increased the node count from 121 to 146, and the core count to 2,624.” As a side point, he’s counting 4 Opteron processors in a node as accounting for 32 cores, rather than the 64 AMD might cite since the the “16 core” Opteron chips based on Interlagos and Abu Dhabi only have 8 floating point units, which is what’s really important for their work.

These constant upgrades were part of the master plan for the project—and will continue to be so since the goal is to continue offering new architectures for manufacturing users to test and explore.

Burness says they intended to upgrade again in mid-2013 (this time through Intel’s early access program), but vendor delays pushed that back to January of 2014. At that time, they upgraded to Intel’s “Ivy Bridge” (144 EP nodes) line, and AMD’s “Abu Dhabi’ Line. The Ivy Bridge nodes indeed feature the 10-core variants (Xeon E5 2680 v2), with 96 of the nodes featuring 64 GB of RAM (for CFD) workloads and 48 featuring 256 GB of RAM (for finite element analysis) workloads.

“We also added one (1) Ivy Bridge-EX system directly from Intel, who saw iForge as a particularly good platform at which to throw this new technology given how industry brings real-world development and production problems to this system.” Burness explained. These only were released from Intel in December and January. iForge is now one of the precious few that we can get any details on that features 4 x 15-core Xeon E7 4890 CPUs for a total of 60 cores and 120 threads. Burness and team have also augmented the server with an extra 1.5 terabytes of memory and multiple Infiniband connections.

In addition, he said, they upgraded their network insofar as PCIe gen 3.0 on the Ivy Bridge nodes increased the usable bandwidth of our QDR Infiniband fabric from 25.6 Gb/sec to 32.0 Gb/sec, “all while maintaining the lowest possible latency (even lower than FDR).” Burness says that coupled with all of this, they’re also adding 8 instances of Windows and GUI’d Red Hat Linux in order to provide the “desktop computing” experience for users that need to do so much inside their engineering workflows to support batch processing HPC. “Here, think of the need to run CAD and CAM workloads at one’s computer and then send the files to an HPC cluster. Doing so becomes inherently tougher as the simulated models become more complex and the data sizes grow larger. Having one integrated environment for the entire workflow is a big productivity booster for our industry partners.”

Burness says that, “Throughout all 3 years of operation, iForge has been supported by a GPFS filesystem from IBM running on a DDN SFA-10000 storage system. We pack our storage servers with 192 GB of RAM/server in order to maximize the amount of caching/buffering to RAM, which can really improve performance for I/O intensive applications.” He noted that “A big part of the design focus is on producing a system every year that is as fast or faster than all but a very elite and small number of companies would be able to build and support for themselves (exceptions would General Electric, BP etc.).”

Giles put all of this in real-world terms by referencing a use case with one of the large manufacturers when they first received the early Sandy Bridges. He said that at time, many of their partners weren’t sure how to step up to Sandy Bridge, despite its promise (including AVX capability) for engineering applications. By allowing them to experiment and hit full production runs on the system, Giles says they were able to completely change their workflows, validate the usefulness of the architecture, and push their normal 128-core workflow into 256 core territory. This isn’t something they would have been able to do on their home machines, which are “artificially dumbed down” to support a broader, more policy-based approach to handling daily work.

This work on iForge will be all be overseen by by UI Labs, which is a separate nonprofit organization based out of the university, where it can better leverage academic resources and those found at NCSA as well.  This ties in with the announcement this week of a $70 million “grant” (which Giles defines more of a matching funding arrangement similar to NDEMC) for digital manufacturing. This Department of Defense-led project will drive additional matched funds on the order of around $250 million from a number of manufacturing companies and other institutions.

As Burness concluded, “The government funded model of a system that runs in the same configuration for 3-5 years is not good enough for our power users from industry, as they have an insatiable appetite for speed and performance. In addition, we do a lot in design process to ensure a much higher level of uptime than many other HPC systems. A big part of that is our use of the GPFS filesystem. Though it must be licensed and is not faster than Lustre, it is WAYYY more reliable and easier to administer. It’s a huge part of the reason we’re able to achieve 99% uptime on iForge, which is a reliability level that industry demands.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

TACC Helps ROSIE Bioscience Gateway Expand its Impact

April 26, 2017

Biomolecule structure prediction has long been challenging not least because the relevant software and workflows often require high-end HPC systems that many bioscience researchers lack easy access to. Read more…

By John Russell

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

IBM, Nvidia, Stone Ridge Claim Gas & Oil Simulation Record

April 25, 2017

IBM, Nvidia, and Stone Ridge Technology today reported setting the performance record for a “billion cell” oil and gas reservoir simulation. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Remote Visualization Optimizing Life Sciences Operations and Care Delivery

As patients continually demand a better quality of care and increasingly complex workloads challenge healthcare organizations to innovate, investing in the right technologies is key to ensuring growth and success. Read more…

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This